回到上一節(jié)開始討論的嫌疑犯博弈問(wèn)題。如果兩個(gè)嫌疑犯都是只為自己利益打算的所謂理性主體人(rational agent),兩位犯罪嫌疑人博弈可能的結(jié)果會(huì)怎樣呢?要是乙抵賴,那么,如果甲坦白甲就可以得到寬大釋放;要是乙坦白,那么,如果甲也坦白的話甲要坐三年牢,但是如果甲抵賴的話甲可要坐五年牢??梢妼?duì)于甲來(lái)說(shuō),不管乙采取什么策略,他坦白自己總是比較有利的。所以兩相比較,坦白是他的全面的嚴(yán)格的優(yōu)勢(shì)策略。
全面,指的是不論對(duì)方采取哪個(gè)策略,我的這個(gè)策略總顯示優(yōu)勢(shì):對(duì)方坦白,我坦白比抵賴好;對(duì)方抵賴,我也是坦白比抵賴好。嚴(yán)格,指的是這個(gè)優(yōu)勢(shì)策略的結(jié)局確實(shí)要好一些:對(duì)方坦白,我坦白得–3確實(shí)比抵賴得–5好;對(duì)方抵賴,我坦白得0也確實(shí)比抵賴得–1好。這里,嚴(yán)格是說(shuō):–3不僅僅是不差于–5,而且是嚴(yán)格好于–5;0不僅僅是不差于–1,而且是嚴(yán)格好于–1?!叭娴膰?yán)格的優(yōu)勢(shì)策略”說(shuō)起來(lái)拗口,我們約定以后可以就簡(jiǎn)稱為嚴(yán)格優(yōu)勢(shì)策略(strictly dominant strategy)。優(yōu)勢(shì)劣勢(shì)是比較而言的。在這個(gè)博弈中,既然坦白是嚴(yán)格優(yōu)勢(shì)策略,那么抵賴就是相應(yīng)的嚴(yán)格劣勢(shì)策略(strictly dominated strategy)。
同樣道理,坦白也是犯罪嫌疑人乙的全面的嚴(yán)格的優(yōu)勢(shì)策略,抵賴是相應(yīng)的嚴(yán)格劣勢(shì)策略。
理性的主體人是不會(huì)采用對(duì)自己明顯不利的嚴(yán)格劣勢(shì)策略的,所以在分析博弈可能的結(jié)局的時(shí)候,我們應(yīng)該把局中人的嚴(yán)格劣勢(shì)策略刪去。下面圖中一橫一豎的兩條粗實(shí)線,就代表兩個(gè)參與人各自把自己的嚴(yán)格劣勢(shì)策略刪去。在這個(gè)博弈中把雙方的嚴(yán)格劣勢(shì)策略都刪去以后,我們就得到這樣的結(jié)論:博弈的結(jié)局是雙方都選擇“坦白”策略,在雙方博弈的這個(gè)對(duì)局之下,他們各得支付–3。
經(jīng)濟(jì)學(xué)習(xí)慣把市場(chǎng)力量對(duì)峙的穩(wěn)定結(jié)局,叫做市場(chǎng)均衡(equilibrium)。比方說(shuō)電視機(jī)的市場(chǎng),供不應(yīng)求將驅(qū)使價(jià)格上升,供大于求將迫使價(jià)格下降,供求力量對(duì)峙的結(jié)果,會(huì)在某個(gè)價(jià)格水平達(dá)到市場(chǎng)供求的均衡。但是像上面這樣用刪去劣勢(shì)策略的方法得到的由雙方的嚴(yán)格優(yōu)勢(shì)策略組成的對(duì)局,作為這個(gè)博弈的均衡,叫做嚴(yán)格優(yōu)勢(shì)策略均衡(equilibrium of strictly dominant strategies)。
這個(gè)博弈有一個(gè)一直沿用的專門名稱,叫做囚徒困境(Prisoner’s Dilemma),所謂囚徒就是上面講的嫌疑犯。在囚徒困境兩行兩列的矩陣格式中,下面一行對(duì)應(yīng)的是甲的嚴(yán)格劣勢(shì)策略,右面一列對(duì)應(yīng)的是乙的嚴(yán)格劣勢(shì)策略,把它們都刪去,就得到“坦白,坦白”得“–3,–3”這個(gè)嚴(yán)格優(yōu)勢(shì)策略均衡。注意,在“–3,–3”或者(–3,–3)這樣的寫法中,第一個(gè)數(shù)字是甲之所得,第二個(gè)數(shù)字是乙之所得??傊鎸?duì)上述形式的博弈表達(dá),在(–3,–3)這樣的寫法中,第一個(gè)數(shù)字是表格左方博弈參與人之所得,第二個(gè)數(shù)字是表格上方博弈參與人之所得。
為節(jié)約篇幅,今后有時(shí)候?qū)⒅辉凇熬仃嚤砀瘛崩镉煤隗w字把結(jié)果的位置表示出來(lái)。注意,這里講的嚴(yán)格優(yōu)勢(shì)策略,是全面的嚴(yán)格的優(yōu)勢(shì)策略:不論對(duì)方采取什么策略,我采取這個(gè)策略總比采取任何別的策略都好,而且要確實(shí)顯出好來(lái),不許“打平手”。被全面的嚴(yán)格的優(yōu)勢(shì)策略壓住的那個(gè)策略,才叫做嚴(yán)格劣勢(shì)策略。像上面那樣通過(guò)把嚴(yán)格劣勢(shì)策略刪去的方法尋求對(duì)局結(jié)果的方法,叫做嚴(yán)格劣勢(shì)策略消去法。如果甲乙都有三四個(gè)甚至更多的策略選擇,通常需要一次一次又一次把嚴(yán)格劣勢(shì)策略刪去,才能最后得到一個(gè)均衡。這樣一次一次把嚴(yán)格劣勢(shì)策略刪去以尋求對(duì)局結(jié)果的方法,叫做嚴(yán)格劣勢(shì)策略逐次消去法(iterated elimination of strictly dominated strategies)。