簡(jiǎn)而言之,在確定的借貸期內(nèi),按復(fù)利計(jì)息的次數(shù)越多,投資人的利息收入就越高。當(dāng)然,籌資人的利息成本也就越大。在極端情況下,如果在每一秒、每一毫秒、每一微秒都可以用復(fù)利計(jì)息,連你睡覺(jué)的時(shí)間都不放過(guò),此時(shí)的復(fù)利又稱為連續(xù)復(fù)利,其殺傷力就更大了,其計(jì)算公式也很簡(jiǎn)單:
A=A0ert
其中,A0為本金,r為利率,t為時(shí)間,A為本息和,在此我們不再展開了。
現(xiàn)在知道棋手的要求是多么過(guò)分了吧
在學(xué)習(xí)了復(fù)利的有關(guān)知識(shí)后,我們可以解決本章開始提出的問(wèn)題了。國(guó)王究竟需要多少麥粒才能滿足棋手的要求呢?有了復(fù)利的概念和公式后,我們就可以解決這個(gè)問(wèn)題了。棋盤第一個(gè)空格里的第一粒麥子相當(dāng)于本金P;通過(guò)故事可以知道,以后每一小格都比前一小格加1倍,即相當(dāng)于利息率為100%;棋盤空格一共有64格,第一格為本金(本金P=1),可知借貸期限n為63期。則可得本利和為:
S=P·(1+r)n=1×(1+100%)63=9223 4×1018(粒)
有人計(jì)算過(guò),按照這種方式填滿整個(gè)棋盤大約需要820億噸大麥,按照現(xiàn)在全球大麥產(chǎn)量來(lái)看,大概550年才能滿足那個(gè)聰明的國(guó)際象棋發(fā)明家。這是一個(gè)何等巨大的數(shù)字啊,大到令人瞠目結(jié)舌!現(xiàn)在知道棋手的要求是多么過(guò)分了吧!
這其實(shí)是一個(gè)按照100%復(fù)利遞增的故事,數(shù)據(jù)可能不是很準(zhǔn)確,但它形象地說(shuō)明了復(fù)利的神奇,偉大的科學(xué)家愛(ài)因斯坦也曾經(jīng)贊嘆過(guò):“復(fù)利,堪稱是世界第八大奇跡,其威力甚至超過(guò)原子彈?!?/p>
收益的資本化:簡(jiǎn)單資產(chǎn)評(píng)估的萬(wàn)能公式
其實(shí)利率有一個(gè)簡(jiǎn)單但非常重要的應(yīng)用:收益的資本化。
在開始之前,先考朋友們一個(gè)簡(jiǎn)單的問(wèn)題。
假定有一筆貸款1年的利息收益是100萬(wàn)元,且該筆貸款的利率為10%時(shí),那么你知道這筆貸款的本金是多少嗎?朋友們肯定會(huì)對(duì)這個(gè)問(wèn)題嗤之以鼻:“這么簡(jiǎn)單的問(wèn)題還來(lái)問(wèn)我,不就等于1 000萬(wàn)元嘛?!贝鸢敢驳拇_如此。
現(xiàn)在我們將這個(gè)問(wèn)題稍微變一變,假定你有一個(gè)商業(yè)上的朋友來(lái)跟你說(shuō),希望你能給他1 200萬(wàn)元以幫助他擴(kuò)大經(jīng)營(yíng)。而作為回報(bào),他將會(huì)在今后的每一年中都支付你100萬(wàn)元,并且我們假定這位朋友一直不死,你也能夠永生,銀行的年利率為10%?,F(xiàn)在的問(wèn)題是:你能答應(yīng)這個(gè)要求嗎?
很多朋友就心想了:借1 200萬(wàn)元給他,他以后每年還我100萬(wàn)元,只要12年我就能把本錢撈回來(lái)了。而現(xiàn)在又說(shuō)了,我們可以永生,那么我不是以后每年都可以收他100萬(wàn)元嘛,想想看啊,那是多少個(gè)100萬(wàn)元,那可是穩(wěn)賺不賠的超級(jí)大買賣,這老兄莫非腦子進(jìn)水了竟然主動(dòng)跟我做這個(gè)賠錢的大買賣?真是個(gè)大傻帽,簡(jiǎn)直無(wú)可救藥。不過(guò)既然如此,這送上門來(lái)的好生意自然不能放過(guò)了,答應(yīng)他了……
事實(shí)真的如此嗎?這商人真的是傻帽嗎?天下有這樣的免費(fèi)午餐嗎?
答案當(dāng)然是否定的,那么,為什么呢?
這其實(shí)就是所謂的收益資本化,它是指任何有收益的事物,即使它并不是一筆貸放出去的貨幣,甚至也不是真正有一筆實(shí)實(shí)在在的資本存在,都可以通過(guò)收益與利率的對(duì)比而倒過(guò)來(lái)算出它相當(dāng)于多大的資本金額。
假定任一事物每年能夠帶來(lái)的平均收益設(shè)為C,年利率設(shè)為r,則該事物的價(jià)格可以表示為:
P=Cr