約翰· B. 弗雷利(John B. Fraleigh)羅德島大學(xué)數(shù)學(xué)與應(yīng)用數(shù)學(xué)科學(xué)系榮休教授,一生致力于數(shù)學(xué)教育,出版過多本有影響力的圖書,《抽象代數(shù)基礎(chǔ)教程》是其代表作之一,這本書已經(jīng)成為經(jīng)典。尼爾· 布蘭德 (Neal Brand)北得克薩斯大學(xué)數(shù)學(xué)系榮休教授,曾被評(píng)為該校杰出教學(xué)教授。他曾擔(dān)任美國(guó)數(shù)學(xué)協(xié)會(huì)得克薩斯分會(huì)理事,獲得美國(guó)數(shù)學(xué)協(xié)會(huì)得克薩斯分會(huì)授予的杰出服務(wù)獎(jiǎng)。
ADVANCED GROUP THEORY 145 16 Isomorphism Theorems 145 17 Sylow Theorems 149 18 Series ofGroups 157 19 Free Abelian Groups 166 20 Free Groups 172 21 Group Presentations 177 V RINGS AND FIELDS 185 22 Rings and Fields 185 23 Integral Domains 194 24 Fermat’s and Euler’sTheorems 200 25 Encryption 205 VI CONSTRUCTING RINGS AND FIELDS 211 26 TheFieldof Quotientsof anIntegral Domain 211 27 Rings of Polynomials 218 28 Factorization ofPolynomials over a Field 228 29 .AlgebraicCoding Theory 237 30 Homomorphisms andFactor Rings 243 31 Prime and MaximalIdeals 250 32 .Noncommutative Examples 258
VII COMMUTATIVE ALGEBRA 267 33 Vector Spaces 267 34 UniqueFactorization Domains 275 35 Euclidean Domains 286 36 Number Theory 292 37 .Algebraic Geometry 297 38 .Gr¨obner Basesfor Ideals 303
VIII EXTENSION FIELDS 311 39 IntroductiontoExtensionFields 311 40 AlgebraicExtensions 319 41 .GeometricConstructions 328 42 Finite Fields 335 Contents v IX GALOIS THEORY 341 43 Introductionto GaloisTheory 341 44 SplittingFields 349 45 SeparableExtensions 357 46 Galois Theory 364 47 Illustrations of Galois Theory 372 48 Cyclotomic Extensions 378 49 Insolvabilityof theQuintic 384 Appendix: Matrix Algebra 391 Bibliography 395 Notations 397 Answersto Odd-NumberedExercises Not Asking for De.nitions or Proofs 401 . Notrequiredfortheremainderofthetext. . This sectionisa prerequisite forSections17 and36only.