書稿為河海大學(xué)理學(xué)院教師團(tuán)隊編寫的留學(xué)生教材。書稿為全英文寫作,在Calculus I (《微積分I》)的礎(chǔ)上對微積分知識進(jìn)行了拓展和深入,全書共分為向量和空間幾何、偏微分、多重積分、線積分和球面積分、無窮級數(shù)五章,章節(jié)結(jié)構(gòu)安排合理,寫作規(guī)范。書稿對基本概念、定理、定義的闡述準(zhǔn)確無誤,輔助圖表清晰直觀,例題具有較強(qiáng)的典型性,進(jìn)解思路清晰,課后練習(xí)難易程度相當(dāng),有利于學(xué)生鞏固和拓展所學(xué)知識。書稿中無政治性、學(xué)術(shù)性問題。
作者簡介
暫缺《微積分II》作者簡介
圖書目錄
1 Vectors and the Geometry of Space 1.1 Rectangular Coordinate System 1.2 Vector 1.3 Equations for Lines and Planes 1.4 Cylinders and Quadric Surfaces 1.5 Parametric Curves and Parametric Surfaces 2 Partial Derivatives 2.1 Functions of Several Variables 2.2 Limits and Continuity 2.3 Partial Derivatives 2.4 Linear Approximation 2.5 Chain Rules 2.6 Directional Derivative and Gradient 2.7 Maximum and Minimum Values 2.8 Lagrange Multiplier 3 Multiple Integrals 3.1 Double Integrals and Iterated Integrals 3.2 Double Integrals over General Regions 3.3 Double Integral in Polar Coordinates 3.4 Triple Integrals in Rectangular Coordinates 3.5 Triple Integrals in Cylindrical Coordinates 3.6 Triple Integrals in Spherical Coordinates 3.7 Applications of Multiple Integrals 3.8 Change of Variables in Multiple Integrals 4 Line Integrals and Surface Integrals 4.1 Line Integrals 4.2 Line Integrals of Vector Fields 4.3 Path Independence 4.4 Green's Theorem 4.5 Parametric Surface and Their Areas 4.6 Surface Integral 4.7 Surface Integrals of Vector Fields 4.8 Gauss' Theorem 4.9 Stokes' Theorem 5 Infinite Series 5.1 Basic Concepts 5.2 The Integral Test 5.3 The Comparison Tests 5.4 Alternating Series 5.5 Absolute Convergence and Conditional Convergence 5.6 Power Series 5.7 Term-by-term Differentiation and Integration 5.8 Taylor and Maclaurin Series 5.9 Fourier Series Bibliography