神經網絡與深度學習是人工智能研究的重要領域,是機器學習的重要組成部分。人工智能是研究理解和模擬人類智能、智能行為及其規(guī)律的科學。本書緊緊圍繞神經網絡和深度學習的基礎知識體系進行系統的梳理,力求從基礎理論、經典模型和前沿應用展開論述,便于讀者能夠較為全面地掌握深度學習的相關知識。全書共 16 章。第 1 章是緒論,簡要介紹人工智能、機器學習、神經網絡與深度學習的基本概念及相互關系,并對神經網絡的發(fā)展歷程和產生機理進行闡述;第2章介紹神經網絡的基本神經元模型、網絡結構、學習方法、學習規(guī)則、正則化方法、模型評估方法等基礎知識;第3~8章介紹多層感知器神經網絡、自組織競爭神經網絡、徑向基函數神經網絡、卷積神經網絡、循環(huán)神經網絡、注意力機制與反饋網絡;第9章介紹深度學習網絡優(yōu)化的相關內容;第 10~13章介紹受限玻爾茲曼機和深度置信網絡、棧式自編碼器、生成對抗網絡和圖神經網絡;第 14 章介紹深度強化學習;第15章介紹深度學習的可解釋性;第16章介紹多模態(tài)預訓練模型。深度學習是源于對含有多個隱藏層的神經網絡結構進行的研究,以便建立和模擬人腦的學習過程。本書整理了人工神經網絡從簡單到復雜的模型,歸納和總結了神經網絡的理論、方法和應用實踐。本書可以作為高等院校人工智能及相關專業(yè)或非計算機專業(yè)的參考用書,也可以作為人工智能領域的科技工作者或科研機構工作人員的參考用書。