第1章緒論
參考文獻(xiàn)
第2章經(jīng)典的固定門限檢測(cè)
2.1雷達(dá)目標(biāo)自動(dòng)檢測(cè)的基本問題
2.1.1最大檢測(cè)距離
2.1.2虛警率
2.1.3目標(biāo)雷達(dá)截面積的Swerling起伏模型
2.1.4自動(dòng)檢測(cè)的經(jīng)典問題——固定門限檢測(cè)
2.2匹配濾波
2.2.1白噪聲背景下的匹配濾波
2.2.2匹配濾波與相關(guān)接收
2.2.3相參脈沖串信號(hào)的匹配濾波
2.3單脈沖檢測(cè)
2.3.1對(duì)非起伏目標(biāo)的單脈沖線性檢測(cè)
2.3.2對(duì)Swerling起伏目標(biāo)的單脈沖線性檢測(cè)
2.4多脈沖檢測(cè)
2.4.1二元檢測(cè)
2.4.2線性檢測(cè)
2.4.3相參脈沖串檢測(cè)
2.5小結(jié)
參考文獻(xiàn)
第3章均值類CFAR處理方法
3.1引言
3.2基本模型描述
3.3CACFAR檢測(cè)器
3.4GO和SOCFAR檢測(cè)器
3.5WCACFAR檢測(cè)器
3.6采用對(duì)數(shù)檢波的CACFAR檢測(cè)器
3.7單脈沖線性CACFAR檢測(cè)器
3.8多脈沖CACFAR檢測(cè)器
3.8.1雙門限CACFAR檢測(cè)器
3.8.2多脈沖非相參積累CACFAR檢測(cè)器
3.9ML類CFAR檢測(cè)器在均勻雜波背景中的性能
3.10ML類CFAR檢測(cè)器在多目標(biāo)環(huán)境中的性能
3.11ML類CFAR檢測(cè)器在雜波邊緣環(huán)境中的性能
3.12比較與總結(jié)
參考文獻(xiàn)
第4章有序統(tǒng)計(jì)類CFAR處理方法
4.1引言
4.2基本模型描述
4.3OSCFAR檢測(cè)器
4.4CMLDCFAR檢測(cè)器
4.5TMCFAR檢測(cè)器
4.6MXCMLD CFAR檢測(cè)器
4.7OSGOCFAR和OSSOCFAR檢測(cè)器
4.8SCFAR檢測(cè)器
4.9其他OS類CFAR檢測(cè)器
4.9.1CATMCFAR檢測(cè)器
4.9.2SOSGOCFAR與MSCFAR檢測(cè)器
4.10OS類CFAR檢測(cè)器的性能分析
4.10.1在均勻雜波背景中的性能
4.10.2在多目標(biāo)環(huán)境中的性能
4.10.3在雜波邊緣背景中的性能
4.11比較與總結(jié)
參考文獻(xiàn)
第5章采用自動(dòng)篩選技術(shù)的GOS類CFAR檢測(cè)器
5.1引言
5.2基本模型描述
5.2.1OSOS類CFAR檢測(cè)器的模型描述
5.2.2OSCA類檢測(cè)器的模型描述
5.2.3TMTM類檢測(cè)器的模型描述
5.3GOSCA、GOSGO、GOSSOCFAR檢測(cè)器
5.3.1GOSCACFAR檢測(cè)器
5.3.2GOSGOCFAR檢測(cè)器
5.3.3GOSSOCFAR檢測(cè)器
5.4MOSCA、OSCAGO、OSCASOCFAR檢測(cè)器
5.4.1MOSCACFAR檢測(cè)器
5.4.2OSCAGOCFAR檢測(cè)器
5.4.3OSCASOCFAR檢測(cè)器
5.5MTM、TMGO、TMSOCFAR檢測(cè)器
5.5.1MTMCFAR檢測(cè)器
5.5.2TMGOCFAR檢測(cè)器
5.5.3TMSOCFAR檢測(cè)器
5.6GOS類CFAR檢測(cè)器在均勻背景和多目標(biāo)環(huán)境中的性能
5.6.1GOS類CFAR檢測(cè)器在均勻背景中的性能
5.6.2GOS類CFAR檢測(cè)器在多目標(biāo)環(huán)境中的性能
5.7GOS類CFAR檢測(cè)器在雜波邊緣環(huán)境中的性能
5.7.1GOSCACFAR檢測(cè)器在雜波邊緣環(huán)境中的性能
5.7.2GOSGOCFAR和GOSSOCFAR檢測(cè)器在雜波邊緣環(huán)境中的性能
5.7.3MOSCACFAR檢測(cè)器在雜波邊緣環(huán)境中的性能
5.7.4OSCAGO,OSCASOCFAR檢測(cè)器在雜波邊緣環(huán)境中的性能
5.7.5MTM、TMGOCFAR檢測(cè)器在雜波邊緣環(huán)境中的性能
5.8比較與總結(jié)
參考文獻(xiàn)
第6章自適應(yīng)CFAR檢測(cè)器
6.1引言
6.2CCACFAR檢測(cè)器
6.3HCECFAR檢測(cè)器
6.4ECFAR檢測(cè)器
6.4.1ECFAR檢測(cè)器結(jié)構(gòu)
6.4.2ECFAR檢測(cè)器在均勻雜波背景中的性能
6.4.3ECFAR檢測(cè)器在多目標(biāo)環(huán)境中的性能
6.5OSTACFAR檢測(cè)器
6.5.1OSTACFAR檢測(cè)器基本原理
6.5.2OSTACFAR檢測(cè)器在雜波邊緣環(huán)境中的性能
6.5.3OSTACFAR檢測(cè)器在多目標(biāo)環(huán)境中的性能
6.6VTMCFAR檢測(cè)器
6.6.1VTMCFAR檢測(cè)器基本原理
6.6.2VTMCFAR檢測(cè)器在均勻雜波背景中的性能
6.6.3VTMCFAR檢測(cè)器在多目標(biāo)環(huán)境中的性能
6.6.4VTMCFAR檢測(cè)器在雜波邊緣環(huán)境中的性能
6.6.5VTMCFAR檢測(cè)器的參數(shù)選擇
6.7Himonas的一系列CFAR檢測(cè)器
6.7.1GCMLDCFAR檢測(cè)器
6.7.2GO/SOCFAR檢測(cè)器
6.7.3ACMLDCFAR檢測(cè)器
6.7.4GTLCMLDCFAR檢測(cè)器
6.7.5ACGOCFAR檢測(cè)器
6.8VICFAR檢測(cè)器
6.8.1VICFAR檢測(cè)器在不同背景中的應(yīng)用
6.8.2VICFAR檢測(cè)器的性能分析
6.9基于回波形狀信息的刪除單元平均CFAR檢測(cè)器
6.9.1基于回波形狀信息的刪除單元平均方法
6.9.2檢測(cè)性能仿真分析
6.10其他自適應(yīng)CFAR檢測(cè)器
6.10.1雙重自適應(yīng)CFAR檢測(cè)器
6.10.2ACCFAR檢測(cè)器
6.10.3改進(jìn)的CACFAR檢測(cè)器
6.10.4自適應(yīng)長(zhǎng)度CFAR檢測(cè)器
6.10.5ACCAODVCFAR檢測(cè)器
6.11比較與小結(jié)
參考文獻(xiàn)
第7章經(jīng)典非高斯雜波背景中的CFAR檢測(cè)器
7.1引言
7.2Logt CFAR檢測(cè)器
7.2.1對(duì)數(shù)正態(tài)分布中的Logt CFAR檢測(cè)器
7.2.2韋布爾分布中的Logt CFAR檢測(cè)器
7.3韋布爾分布中有序統(tǒng)計(jì)類CFAR檢測(cè)器
7.3.1OSCFAR檢測(cè)器在韋布爾背景中的檢測(cè)性能
7.3.2OSGOCFAR檢測(cè)器在韋布爾背景中的檢測(cè)性能
7.3.3韋布爾背景中WeberHaykin恒虛警檢測(cè)算法
7.3.4用參考單元樣本的期望和中值估計(jì)c的方法
7.3.5多脈沖二進(jìn)制積累下OSCFAR的檢測(cè)性能
7.3.6多脈沖二進(jìn)制積累下OSGOCFAR的檢測(cè)性能
7.4MLHCFAR檢測(cè)器
7.4.1形狀參數(shù)已知時(shí)韋布爾分布背景中的MLHCFAR檢測(cè)器
7.4.2形狀參數(shù)未知時(shí)韋布爾分布背景中的MLHCFAR檢測(cè)器
7.4.3檢測(cè)概率和CFAR損失
7.5BLUECFAR檢測(cè)器
7.5.1韋布爾背景中的BLUE檢測(cè)器
7.5.2對(duì)數(shù)正態(tài)背景中的BLUECFAR檢測(cè)器
7.6Pearson分布背景下的CFAR檢測(cè)器
7.6.1Pearson分布背景下的CACFAR檢測(cè)器
7.6.2Pearson分布背景下的OSCFAR檢測(cè)器
7.6.3Pearson分布背景下的CMLDCFAR檢測(cè)器
7.7Cauchy分布背景下的CFAR檢測(cè)器
7.8比較與小結(jié)
參考文獻(xiàn)
第8章復(fù)合高斯雜波中的CFAR處理
8.1引言
8.2復(fù)合高斯分布
8.2.1復(fù)合高斯復(fù)幅度模型
8.2.2K分布雜波包絡(luò)模型
8.2.3相關(guān)K分布雜波幅度模型
8.2.4K分布雜波的仿真
8.3K分布雜波加熱噪聲中的檢測(cè)性能
8.3.1K分布與記錄數(shù)據(jù)的匹配
8.3.2雜波加噪聲中目標(biāo)檢測(cè)的計(jì)算
8.3.3性能分析
8.4經(jīng)典CFAR檢測(cè)器在K分布雜波中的性能分析
8.4.1調(diào)制過程不相關(guān)的K分布雜波下CFAR檢測(cè)
8.4.2調(diào)制過程完全相關(guān)的K分布雜波下CFAR檢測(cè)
8.4.3調(diào)制過程部分相關(guān)時(shí)K分布雜波下CFAR檢測(cè)
8.5復(fù)合高斯雜波中的最優(yōu)CFAR檢測(cè)器
8.5.1復(fù)合高斯雜波包絡(luò)中的最優(yōu)CFAR檢測(cè)
8.5.2復(fù)合高斯雜波中的最優(yōu)相參子空間CFAR檢測(cè)
8.6球不變隨機(jī)雜波下相參CFAR檢測(cè)
8.6.1最大似然估計(jì)問題
8.6.2CFAR檢測(cè)問題
8.6.3性能分析
8.7復(fù)合高斯雜波中的貝葉斯自適應(yīng)檢測(cè)器
8.7.1問題描述
8.7.2貝葉斯自適應(yīng)檢測(cè)器設(shè)計(jì)
8.7.3性能分析
8.8小結(jié)
參考文獻(xiàn)
第9章非參量CFAR處理
9.1引言
9.2非參量檢測(cè)器的漸近相對(duì)效率
9.3單樣本非參量檢測(cè)器
9.3.1符號(hào)檢測(cè)器
9.3.2Wilcoxon檢測(cè)器
9.4兩樣本非參量檢測(cè)器
9.4.1廣義符號(hào)檢測(cè)器
9.4.2MannWhitney檢測(cè)器
9.4.3Savage檢測(cè)器與修正的Savage檢測(cè)器
9.4.4秩方檢測(cè)器與修正的秩方檢測(cè)器
9.4.5幾種非參量檢測(cè)器的漸近相對(duì)效率
9.4.6非參量檢測(cè)器采用有限樣本時(shí)的檢測(cè)性能
9.5次優(yōu)秩非參量檢測(cè)器
9.5.1局部最優(yōu)秩檢測(cè)器
9.5.2次優(yōu)秩檢測(cè)器
9.5.3性能分析
9.6韋布爾雜波下非參量檢測(cè)器的性能分析
9.6.1韋布爾背景下量化秩非參量檢測(cè)器
9.6.2韋布爾背景下廣義符號(hào)非參量檢測(cè)器
9.7利用逆正態(tài)得分函數(shù)修正秩的非參量檢測(cè)器
9.7.1基本設(shè)計(jì)思路
9.7.2檢測(cè)器設(shè)計(jì)
9.7.3性能分析
9.8比較與總結(jié)
參考文獻(xiàn)
第10章雜波圖CFAR處理
10.1引言
10.2Nitzberg雜波圖技術(shù)
10.2.1Nitzberg雜波圖檢測(cè)的原理
10.2.2Nitzberg雜波圖ADT值和虛警指標(biāo)對(duì)w取值的約束
10.2.3Nitzberg雜波圖在韋布爾分布中的性能
10.3雜波圖單元平均CFAR平面檢測(cè)技術(shù)
10.3.1基本模型描述
10.3.2均勻背景中的性能分析
10.3.3面技術(shù)與點(diǎn)技術(shù)的性能比較
10.4混合CM/LCFAR雜波圖檢測(cè)技術(shù)
10.4.1基本模型
10.4.2均勻背景中的性能分析
10.4.3存在干擾目標(biāo)時(shí)的性能分析
10.5雙參數(shù)雜波圖檢測(cè)技術(shù)
10.5.1雙參數(shù)雜波圖基本模型
10.5.2對(duì)目標(biāo)自遮蔽的處理
10.6比較和總結(jié)
參考文獻(xiàn)
第11章變換域CFAR處理
11.1引言
11.2頻域CFAR檢測(cè)
11.2.1信號(hào)和雜波噪聲的離散傅里葉變換處理
11.2.2頻域CACFAR檢測(cè)器
11.2.3MTIFFT頻域CACFAR方案
11.2.4頻域奇偶處理檢測(cè)器
11.3小波域CFAR檢測(cè)
11.3.1基于離散小波變換的CMCFAR檢測(cè)方法
11.3.2基于正交小波變換的CACFAR檢測(cè)方法
11.4分?jǐn)?shù)階傅里葉變換域目標(biāo)檢測(cè)
11.4.1基于FRFT的LFM信號(hào)檢測(cè)與參數(shù)估計(jì)
11.4.2FRFT域動(dòng)目標(biāo)檢測(cè)器設(shè)計(jì)
11.4.3FRFT域長(zhǎng)時(shí)間相參積累檢測(cè)方法
11.5HilbertHuang變換域目標(biāo)檢測(cè)
11.5.1HHT基本原理
11.5.2基于IMF特性的微弱目標(biāo)檢測(cè)方法
11.6稀疏表示域目標(biāo)檢測(cè)
11.6.1信號(hào)稀疏表示模型及求解方法
11.6.2基于稀疏時(shí)頻分布的雷達(dá)目標(biāo)檢測(cè)方法
11.6.3雷達(dá)目標(biāo)檢測(cè)結(jié)果與分析
11.7小結(jié)
參考文獻(xiàn)
第12章高分辨率雷達(dá)目標(biāo)檢測(cè)
12.1引言
12.2距離擴(kuò)展目標(biāo)的信號(hào)模型
12.2.1秩1信號(hào)模型
12.2.2多秩子空間信號(hào)模型
12.3復(fù)合高斯雜波中多秩距離擴(kuò)展目標(biāo)的子空間檢測(cè)器
12.3.1問題描述
12.3.2廣義匹配子空間檢測(cè)器的設(shè)計(jì)
12.3.3廣義匹配子空間檢測(cè)器虛警概率的計(jì)算
12.3.4廣義匹配子空間檢測(cè)器的自適應(yīng)實(shí)現(xiàn)
12.3.5性能分析
12.4復(fù)合高斯雜波加熱噪聲中的距離擴(kuò)展目標(biāo)檢測(cè)器
12.4.1問題描述
12.4.2熱噪聲的等效處理
12.4.3復(fù)合高斯雜波加熱噪聲中距離擴(kuò)展目標(biāo)檢測(cè)器的設(shè)計(jì)
12.4.4檢測(cè)器的性能分析
12.5SαS分布雜波中的距離擴(kuò)展目標(biāo)檢測(cè)器
12.5.1SαS分布及PFLOM變換
12.5.2問題描述
12.5.3基于PFLOM變換的距離擴(kuò)展目標(biāo)檢測(cè)器
12.5.4SαS分布雜波中的二元積累柯西檢測(cè)器
12.6SAR圖像CFAR檢測(cè)研究的主要方面及雜波單元選取
12.6.1SAR圖像CFAR檢測(cè)研究的主要方面
12.6.2SAR圖像CFAR檢測(cè)的雜波單元選取
12.7基于廣義Gamma雜波模型的SAR圖像CFAR檢測(cè)
12.7.1檢測(cè)方法設(shè)計(jì)
12.7.2性能分析
12.8基于語義知識(shí)輔助的SAR圖像CFAR檢測(cè)
12.8.1檢測(cè)方法設(shè)計(jì)
12.8.2性能分析
12.9基于密度特征的SAR圖像CFAR檢測(cè)快速實(shí)現(xiàn)
12.9.1檢測(cè)方法設(shè)計(jì)
12.9.2性能分析
12.10比較與小結(jié)
參考文獻(xiàn)
第13章多傳感器分布式CFAR處理
13.1引言
13.2基于局部二元判決的分布式CFAR檢測(cè)
13.2.1分布式CACFAR檢測(cè)
13.2.2分布式OSCFAR檢測(cè)
13.2.3分布式CFAR檢測(cè)性能分析
13.3基于局部檢測(cè)統(tǒng)計(jì)量的分布式CFAR檢測(cè)
13.3.1基于R類局部檢測(cè)統(tǒng)計(jì)量的分布式CFAR檢測(cè)
13.3.2基于S類局部檢測(cè)統(tǒng)計(jì)量的分布式CFAR檢測(cè)
13.4分布式MIMO雷達(dá)CFAR檢測(cè)
13.4.1目標(biāo)回波經(jīng)典線性模型及檢測(cè)器設(shè)計(jì)
13.4.2MIMO分布孔徑雷達(dá)AMF檢測(cè)器性能分析
13.4.3仿真分析
13.5小結(jié)
參考文獻(xiàn)
第14章多維CFAR處理
14.1引言
14.2陣列雷達(dá)CFAR檢測(cè)
14.2.1信號(hào)模型與二元假設(shè)檢驗(yàn)
14.2.2秩1目標(biāo)模型下的陣列雷達(dá)目標(biāo)檢測(cè)器
14.2.3子空間目標(biāo)模型下的陣列雷達(dá)目標(biāo)檢測(cè)器
14.2.4陣列雷達(dá)目標(biāo)檢測(cè)器的性質(zhì)與性能
14.3基于自適應(yīng)空時(shí)編碼設(shè)計(jì)的二維聯(lián)合CFAR檢測(cè)
14.3.1信號(hào)模型及MSD檢測(cè)器
14.3.2自適應(yīng)空時(shí)編碼設(shè)計(jì)
14.3.3仿真與分析
14.4基于空時(shí)距三維聯(lián)合的自適應(yīng)檢測(cè)
14.4.1MIMO雷達(dá)信號(hào)模型
14.4.2匹配濾波后的空時(shí)距自適應(yīng)處理
14.4.3空時(shí)距自適應(yīng)處理
14.4.4算法實(shí)施與矩陣快速更新
14.4.5自適應(yīng)聚焦和檢測(cè)一體化處理
14.4.6仿真與分析
14.5其他多維CFAR檢測(cè)
14.5.1掃描間融合CFAR檢測(cè)
14.5.2極化CFAR檢測(cè)
14.6小結(jié)
參考文獻(xiàn)
第15章基于特征的CFAR處理
15.1引言
15.2海雜波時(shí)域分形特征與CFAR檢測(cè)
15.2.1海尖峰判定
15.2.2海尖峰描述參數(shù)及統(tǒng)計(jì)特性
15.2.3海尖峰的Paretian泊松模型
15.2.4目標(biāo)檢測(cè)及性能分析
15.3海雜波頻域分形特征與CFAR檢測(cè)
15.3.1分?jǐn)?shù)布朗運(yùn)動(dòng)在頻域中的分形特性
15.3.2海雜波頻譜的單一分形特性
15.3.3海雜波頻譜單一分形參數(shù)的影響因素
15.3.4目標(biāo)檢測(cè)與性能分析
15.4海雜波時(shí)/頻域多特征與目標(biāo)檢測(cè)
15.4.1特征提取與分析
15.4.2三維特征檢測(cè)器
15.4.3檢測(cè)性能分析
15.5基于深度學(xué)習(xí)的目標(biāo)檢測(cè)
15.5.1基于深度循環(huán)神經(jīng)網(wǎng)絡(luò)的脈壓、檢測(cè)一體化
15.5.2仿真與分析
15.5.3實(shí)測(cè)數(shù)據(jù)驗(yàn)證
15.6小結(jié)
參考文獻(xiàn)
第16章回顧、建議與展望
16.1回顧
16.1.1形成CFAR處理理論體系
16.1.2提出GOS類CFAR檢測(cè)器并建立統(tǒng)一模型
16.1.3延伸自適應(yīng)CFAR檢測(cè)
16.1.4發(fā)展多傳感器分布式CFAR檢測(cè)
16.1.5將CFAR處理由時(shí)域和頻域拓展到多種變換域
16.1.6將CFAR處理的信息源維度由一維擴(kuò)展到多維并形成多維CFAR檢測(cè)
16.1.7將幅度特征拓展到分形等多種特征
16.2問題與建議
16.2.1性能分析與評(píng)價(jià)方法
16.2.2加強(qiáng)對(duì)目標(biāo)特性的研究
16.2.3拓展CFAR研究思路
16.2.4注重新體制雷達(dá)中的CFAR處理研究
16.3研究方向展望
16.3.1多維信號(hào)CFAR處理
16.3.2背景雜波辨識(shí)與智能處理
16.3.3信號(hào)處理新方法應(yīng)用與多特征CFAR處理
16.3.4其他領(lǐng)域的CFAR處理
參考文獻(xiàn)
英文縮略語
CONTENTS
Chapter 1Preface
Reference
Chapter 2Classical Detection with Fixed Threshold
2.1Fundamental Problems and Principles of Radar Automatic Detection
2.1.1Maximum Detection Range
2.1.2False Alarm Rate
2.1.3Swerlingfluctuation Models of Target Radar Cross Section
2.1.4Classical Issue of Automatic Detection—the Detection with Fixed Threshold
2.2Matched Filtering
2.2.1Matched Filtering in White Gaussian Noise Background
2.2.2Matched Filtering and Correlated Receiving
2.2.3Matched Filter for Coherent Pulsetrain Signals
2.3SinglePulse Detection
2.3.1SinglePulse Linear Detection for Nonfluctuation Target
2.3.2SinglePulse Linear Detection for Swerlingfluctuation Target
2.4MultiplePulse Detection
2.4.1Binary Detection
2.4.2Linear Detection
2.4.3Detection of Coherent PulseTrain Signals
2.5Summary
Reference
Chapter 3The CFAR Processing Methods Based on Mean Level
3.1Introduction
3.2Description of Basic Models
3.3CACFAR Detector
3.4GO and SOCFAR Detector
3.5WCACFAR Detector
3.6CACFAR Scheme with LogarithmicLaw Detector
3.7CACFAR Scheme with SinglePulse Linear Detector
3.8CACFAR Detector for Multiple Pulses
3.8.1CACFAR Detector with Double Threshold
3.8.2CACFAR Detector based on Multiple Pulses Noncoherent Accumulation
3.9Performance of MLCFAR Detectors in Homogeneous Background
3.10Performance of MLCFAR Detectors in Multiple Target Situations
3.11Performance of MLCFAR Detectors at Clutter Edges
3.12Comparison and Summary
Reference
Chapter 4The CFAR Processing Methods Based on Order Statistics
4.1Introduction
4.2Description of Basic Models
4.3OSCFAR Detector
4.4CMLDCFAR Detector
4.5TMCFAR Detector
4.6MXCMLD CFAR Detector
4.7OSGOCFAR and OSSOCFAR Detectors
4.8SCFAR Detector
4.9Other CFAR Detectors based on Order Statistics
4.9.1CATMCFAR Detector
4.9.2SOSGOCFAR and MSCFAR Detectors
4.10Performance of OrderStatistic CFAR Detectors
4.10.1Performance in Homogeneous Background
4.10.2Performance in Multiple Target Situations
4.10.3Performance at Clutter Edges
4.11Comparison and Summary
Reference
Chapter 5The Generalized OrderStatistic (GOS) CFAR Detectors with
Automatic Censoring Technique
5.1Introduction
5.2Description of Basic Models
5.2.1Model Description of OSOS Type CFAR Detectors
5.2.2Model Description of OSCA Type CFAR Detectors
5.2.3Model Description of TMTM Type CFAR Detectors
5.3GOSCA,GOSGO,GOSSOCFAR Detectors
5.3.1GOSCACFAR Detector
5.3.2GOSGOCFAR Detector
5.3.3GOSSOCFAR Detector
5.4MOSCA,OSCAGO,OSCASOCFAR Detectors
5.4.1MOSCACFAR Detector
5.4.2OSCAGOCFAR Detector
5.4.3OSCASOCFAR Detector
5.5MTM,TMGO,TMSOCFAR Detectors
5.5.1MTMCFAR Detector
5.5.2TMGOCFAR Detector
5.5.3TMSOCFAR Detector
5.6Performance of GOS Type CFAR Detectors in Homogeneous Background
and Multiple Target Situations
5.6.1Performance of GOS Type CFAR Detectors in Homogeneous Background
5.6.2Performance of GOS Type CFAR Detectors in Multiple Target Situations
5.7Performance of GOS Type CFAR Detectors at Clutter Edges
5.7.1Performance of GOSCACFAR Detectors at Clutter Edges
5.7.2Performance of GOSGO,GOSSOCFAR Detectors at Clutter Edges
5.7.3Performance of MOSCACFAR Detectors at Clutter Edges
5.7.4Performance of OSCAGO,OSCASOCFAR Detectors at Clutter Edges
5.7.5Performance of MTM,TMGOCFAR Detectors at Clutter Edges
5.8Comparison and Summary
Reference
Chapter 6Adaptive CFAR Detectors
6.1Introduction
6.2CCACFAR Detector
6.3HCECFAR Detector
6.4ECFAR Detector
6.4.1ECFAR Detector Architecture
6.4.2Performance of ECFAR Detector in Homogeneous Background
6.4.3Performance of ECFAR Detector in Multiple Target Situations
6.5OSTACFAR Detector
6.5.1Principle of OSTACFAR Detector
6.5.2Performance of OSTACFAR Detector in Clutter Edge
6.5.3Performance of OSTACFAR Detector in Multiple Target Situations
6.6VTMCFAR Detector
6.6.1Principle of VTMCFAR Detector
6.6.2Performance of VTMCFAR Detector in Homogeneous Background
6.6.3Performance of VTMCFAR Detector in Multiple Target Situations
6.6.4Performance of VTMCFAR Detector in Clutter Edge
6.6.5Choice of Parameters for VTMCFAR Detector
6.7A Series of CFAR Detectors of Himonas
6.7.1GCMLDCFAR Detector
6.7.2GO/SOCFAR Detector
6.7.3ACMLDCFAR Detector
6.7.4GTLCMLDCFAR Detector
6.7.5ACGOCFAR Detector
6.8VICFAR Detector
6.8.1Application of VICFAR Detector in Different Background
6.8.2Performance Analysis of VICFAR Detector
6.9ESECA CFAR Detector
6.9.1ESECA method
6.9.2Simulation Analysis of Detection Performance
6.10Other Adaptive CFAR Detectors
6.10.1Double Adaptive CFAR Detector
6.10.2ACCFAR Detector
6.10.3Improved CACFAR Detector
6.10.4Adaptive Length CFAR Detector
6.10.5ACCAODVCFAR Detector
6.11Comparison and Summary
Reference
Chapter 7The CFAR Detectors in Classical nonGaussian Background
7.1Introduction
7.2Logt CFAR Detector
7.2.1Logt CFAR Detector in Lognormal Distribution
7.2.2Logt CFAR Detector in Weibull Distribution
7.3OrderStatistic CFAR Detectors in Weibull Background
7.3.1Detection Performance of OSCFAR Detector in Weibull Background
7.3.2Detection Performance of OSGOCFAR Detector in Weibull Background
7.3.3WeberHaykin CFAR Scheme in Weibull Background
7.3.4Estimation of c Based on Expectation and Median of Reference Samples
7.3.5Detection Performance of OSCFAR with Binary Integration for Multiple Pulses
7.3.6Detection Performance of OSGOCFAR with Binary Integration for Multiple Pulses
7.4MLHCFAR Detector
7.4.1MLHCFAR Detector in Weibull Background with Known Shape Parameter
7.4.2MLHCFAR Detector in Weibull Background with Unknown Shape Parameter
7.4.3Detection Probability and CFAR Loss
7.5BLUECFAR Detector
7.5.1BLUE in Weibull Background
7.5.2BLUE in Lognormal Background
7.6CFAR Detectors in Pearson Distribution
7.6.1CACFAR Detectors in Pearson Distribution
7.6.2OSCFAR Detectors in Pearson Distribution
7.6.3CMLDCFAR Detectors in Pearson Distribution
7.7CFAR Detector in Cauchy Distribution
7.8Comparison and Summary
Reference
Chapter 8CFAR Processing in Compound Gaussian Clutter
8.1Introduction
8.2Compound Gaussian Distribution
8.2.1Compound Gaussian Complex Amplitude Model
8.2.2K Distributed Envelop Clutter Model
8.2.3Correlated K Distributed Clutter Model
8.2.4Simulation of K Distributed Clutter
8.3Detection Performance in K Distributed Clutter plus Thermal Noise
8.3.1Matching of K Distribution with Recorded Data
8.3.2Calculation of Detection Performance in Clutter plus Noise
8.3.3Performance Analysis
8.4Performance Analysis of Classical CFAR Detectors in K Distributed Clutter
8.4.1CFAR Detection in K Distributed Clutter with Uncorrelated Modulation Process
8.4.2CFAR Detection in K Distributed Clutter with Completely Correlated Modulation Process
8.4.3CFAR Detection in K Distributed Clutter with Partially Correlated Modulation Process
8.5Optimal CFAR Detectors in Compound Gaussian Clutter
8.5.1Optimal CFAR Detectors in Compound Gaussian Clutter Envelop
8.5.2Optimal Coherent Subspace CFAR Detectors in Compound Gaussian Clutter
8.6Coherent CFAR Detectors in Spherically Invariant Random Clutter
8.6.1Maximum Likelihood Estimation Problem
8.6.2CFAR Detection Problem
8.6.3Performance Analysis
8.7Bayesian Adaptive Detector in Compound Gaussian Clutter
8.7.1Problem Formulation
8.7.2Design of Bayesian Adaptive Detector
8.7.3Performance Analysis
8.8Summary
Reference
Chapter 9Nonparametric CFAR Detection
9.1Introduction
9.2Asymptotic Relative Efficiency for Nonparametric Detector
9.3OneSample Nonparametric Detector
9.3.1Sign Detector
9.3.2Wilcoxon Detector
9.4TwoSample Nonparametric Detector
9.4.1Generalized Sign Detector
9.4.2MannWhitney Detector
9.4.3Savage Detector and Modifier
9.4.4Rank Squared Detector and Modifier
9.4.5Asymptotic Relative Efficiency of Several Nonparametric Detectors
9.4.6Detection Performance of Nonparametric Detector with Finite Samples
9.5Suboptimal Rank Nonparametric Detector
9.5.1Locally Optimal Rank Detector
9.5.2Suboptimal Rank Detector
9.5.3Performance Analysis
9.6Performance Analysis of Nonparametric Detectors in Weibull Clutter
9.6.1Rank Quantization Nonparameter Detector in Weibull Clutter
9.6.2Generalized Sign Nonparameter Detector in Weibull Clutter
9.7Nonparametric Detectors Using InverseNormalScore Function Modified Rank
9.7.1Basic Design Idea
9.7.2Detector Design
9.7.3Performance Analysis
9.8Comparison and Summary
Reference
Chapter 10Clutter Map CFAR Processing
10.1Introduction
10.2Nitzbergs Clutter Map Technique
10.2.1Principle of Nitzbergs Clutter Map
10.2.2Restriction on w by the ADT and False Alarm Rate of Nitzbergs Clutter Map
10.2.3Performance of Nitzbergs Clutter Map in Weibull Clutter
10.3Clutter Map CACFAR PlaneDetection Technique
10.3.1Basic Model Description
10.3.2Performance Analysis in Homogeneous Background
10.3.3Performance Comparison between PlaneDetection and PointDetection
10.4Hybrid CM/LCFAR Clutter Map Detection Technique
10.4.1Basic Model
10.4.2Performance in Homogeneous Background
10.4.3Performance in the Situations with Interference Target
10.5Biparametric Clutter Map Detection Technique
10.5.1Basical Model of Biparametric Clutter Map
10.5.2Target Selfmasking Avoidance
10.6Comparison and Summary
Reference
Chapter 11CFAR Processing in Transform Domain
11.1Introduction
11.2Transform Domain CFAR
11.2.1Discrete Fourier Transform of Signal,Clutter and Noise
11.2.2Frequency Domain CACFAR
11.2.3MTIFFTfrequency Domain CACFAR
11.2.4Frequency Domain Oddeven Processing Detector
11.3Wavelet domain CFAR
11.3.1CMCFAR Based on Discrete Wavelet Transform
11.3.2CACFAR Based on Orthogonal Wavelet Transform
11.4Fractional Fourier Transform Domain Target Detection
11.4.1LFM Signal Detection and Estimation via FRFT
11.4.2Moving Target Detector in FRFT Domain
11.4.3Longtime Coherent Integration in FRFT Domain
11.5HilbertHuang Transform Domain Target Detection
11.5.1Principle of HHT
11.5.2Weak Target Detection Based on IMF Property
11.6Sparse representation domain target detection
11.6.1Signal Sparse Representation Model and Solution
11.6.2Radar Target Detection Based on Sparse Timefrequency Distribution
11.6.3Radar Target Detection Result and Analysis
11.7Summary
Reference
Chapter 12Target Detection for High Resolution Radar
12.1Introduction
12.2Signal Model of RangeSpread Target
12.2.1Rank One Signal Model
12.2.2MultiRank Subspace Signal Model
12.3MultiRank Subspace Detector of RangeSpread Target in Compound Gaussian Clutter
12.3.1Problem Formulation
12.3.2Design of Generalized Matched Subspace Detector
12.3.3Calculation of Probability of False Alarm for Generalized Matched Subspace Detector
12.3.4Adaptive Implementation of Generalized Matched Subspace Detector
12.3.5Performance Analysis
12.4RangeSpread Target Detector in Compound Gaussian Clutter plus Thermal Noise
12.4.1Problem Formulation
12.4.2Equivalent Processing of Thermal Noise
12.4.3Design of RangeSpread Target Detector in Compound
Gaussian Clutter plus Thermal Noise
12.4.4Detection Performance Analysis
12.5Detector of RangeSpread Target in SαS Clutter
12.5.1SαS Distribution and PFLOM Transform
12.5.2Problem Formulation
12.5.3RangeSpread Target Detector based on PFLOM Transform
12.5.4Binary Integration Cauchy Detector in SαS Clutter
12.6Main Aspects of CFAR Detection for SAR Images and Selection of Clutter Cells
12.6.1Main Aspects of CFAR Detection for SAR Images
12.6.2Selection of Clutter Cells for SAR Images in CFAR Detection
12.7CFAR Detection for SAR Images based on Generalized Gamma Clutter Model
12.7.1Detector Design
12.7.2Performance Analysis
12.8Semantic Knowledgeaided CFAR Detection for SAR Images
12.8.1Detector Design
12.8.2Performance Analysis
12.9Fast Implementation based on Density Character of CFAR Detection for SAR Images
12.9.1Detector Design
12.9.2Performance Analysis
12.10Comparison and Summary
Reference
Chapter 13Distributed CFAR Processing with Multisensor
13.1Introduction
13.2Distributed CFAR Detection with Multisensor based on Local Binary Decision
13.2.1Distributed CACFAR Detection
13.2.2Distributed OSCFAR Detection
13.2.3Examples for Distributed CFAR Detection
13.3Distributed CFAR Detection with Multisensor based on Local Test Statistic
13.3.1Distributed CFAR Detection based on R Type Local Test Statistic
13.3.2Distributed CFAR Detection based on S Type Local Test Statistic
13.4CFAR Detection of Distributed MIMO Radar
13.4.1the Classical Linear Model of Target Returns and Detector Design
13.4.2Performance Analysis of AMF Detector for Distributed MIMO Apertures
13.4.3Simulation and Analysis
13.5Summary
Reference
Chapter 14Multidimensional CFAR Processing
14.1Introduction
14.2CFAR Detection for Array Radar
14.2.1Signal Model and Binary Hypothesis Test
14.2.2Array Radar Detector with Rank1 Target Model
14.2.3Array Radar Detector with Subspace Target Model
14.2.4Property and Performance of Array Radar Target Detector
14.3Twodimension CFAR Detection based on Adaptive Spacetime Coding Design
14.3.1Signal Model and MSD Detector
14.3.2Adaptive Spacetime Coding Design
14.3.3Simulation and Analysis
14.4Spacetimerange Adaptive Detection
14.4.1MIMO Radar Signal Model
14.4.2Spacetimerange Adaptive Processing after Matched Filtering
14.4.3Spacetimerange Adaptive Processing
14.4.4Implementation and Fast Matrix Update
14.4.5Adaptive Focus and Detection Integrated Processing
14.4.6Simulation and Analysis
14.5Other Multidimensional CFAR Detection
14.5.1CFAR Detection with ScantoScan Fusion
14.5.2Polarimetric CFAR Processing
14.6Summary
Reference
Chapter 15CFAR Processing Based on Feature
15.1Introduction
15.2Fractal Feature of Sea Clutter in Time Domain and CFAR Detection
15.2.1Judge of Sea Spike
15.2.2Parameter of Sea Spike and Statistics
15.2.3Paretian Possion Model of Sea Spike
15.2.4Target Detection and Performance Analysis
15.3Fractal Feature of Sea Clutter in Frequency Domain and CFAR Detection
15.3.1Fractal Property of FBM in Frequency Domain
15.3.2Monofractal Property of Sea Clutter Frequency Spectrum
15.3.3Influence Factor of Sea Clutter Monofractal Parameter
15.3.4Target Detection and Performance Analysis
15.4Multifeature of Sea Clutter in Time/Frequency Domain and Target Detection
15.4.1Feature Extraction and Analysis
15.4.2Detector Using Three Features
15.4.3Detection Performance Analysis
15.5Target Detection Based on Deep Learning
15.5.1Integration of Pulse Compression and Detection based on RNN
15.5.2Simulation and Analysis
15.5.3Verification Using Measured Data
15.6Conclusion
Reference
Chapter 16Review,Suggestion and Prospect
16.1Review
16.1.1Foundation of Theory System of CFAR Processing
16.1.2Proposal of GOS Type CFAR Detectors with Automatic Censoring Technique
and Foundation of Uniform Model
16.1.3Expand Adaptive CFAR Processing
16.1.4Develop Distributed CFAR Detection with Multisensor
16.1.5Expand CFAR Processing from Time and Frequency Domain to other Transform Domains
16.1.6Expand the Information Source Dimension of CFAR Processing from One to Many,
and Form Multidimensional CFAR Detection
16.1.7Expand the Amplitude Feature to Multiple Feature including Fractal Feature
16.2Problems and Suggestions
16.2.1Performance Analysis and Evaluation Methods
16.2.2Strengthen the Research on Target Characteristics
16.2.3Expand the Research ideas about CFAR
16.2.4Pay Attention to the CFAR Processing Research in the New System Radar
16.3Prospect for Research Direction
16.3.1Multidimensional Signal CFAR Processing
16.3.2Background Clutter Identification and Intelligent Processing
16.3.3Application of New Signal Processing Method and Multifeature CFAR Processing
16.3.4CFAR Processing in Other Areas
Reference
English Abbreviation Glossary