注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)工業(yè)技術(shù)自動化技術(shù)、計(jì)算技術(shù)基于工業(yè)大數(shù)據(jù)分析的故障診斷方法及應(yīng)用

基于工業(yè)大數(shù)據(jù)分析的故障診斷方法及應(yīng)用

基于工業(yè)大數(shù)據(jù)分析的故障診斷方法及應(yīng)用

定 價(jià):¥120.00

作 者: 周福娜 等 著
出版社: 科學(xué)出版社
叢編項(xiàng):
標(biāo) 簽: 暫缺

ISBN: 9787030747402 出版時(shí)間: 2023-01-01 包裝: 平裝
開本: 16開 頁數(shù): 229 字?jǐn)?shù):  

內(nèi)容簡介

  《基于工業(yè)大數(shù)據(jù)分析的故障診斷方法及應(yīng)用》是作者開展基于工業(yè)大數(shù)據(jù)分析的故障診斷算法設(shè)計(jì)及其應(yīng)用研究成果的總結(jié)。《基于工業(yè)大數(shù)據(jù)分析的故障診斷方法及應(yīng)用》主要內(nèi)容包括基于統(tǒng)計(jì)特征提取的故障檢測方法設(shè)計(jì)、知識導(dǎo)引的統(tǒng)計(jì)特征抽取和故障診斷方法設(shè)計(jì)、基于深度學(xué)習(xí)的頻率類故障診斷、基于多源異構(gòu)數(shù)據(jù)融合的深度學(xué)習(xí)故障診斷算法設(shè)計(jì)、基于分級深層神經(jīng)網(wǎng)絡(luò)的多模態(tài)故障診斷算法設(shè)計(jì)、基于全局優(yōu)化GAN的非均衡數(shù)據(jù)故障診斷方法設(shè)計(jì)等。

作者簡介

暫缺《基于工業(yè)大數(shù)據(jù)分析的故障診斷方法及應(yīng)用》作者簡介

圖書目錄

目錄
前言
第1章 緒論 1
1.1 引言 1
1.2 故障診斷的研究內(nèi)容及方法分類 3
1.2.1 故障診斷的研究內(nèi)容 3
1.2.2 故障診斷方法分類 3
1.3 數(shù)據(jù)驅(qū)動的故障診斷方法綜述 5
1.3.1 故障診斷的專家系統(tǒng)法 6
1.3.2 基于定性趨勢分析的故障診斷 6
1.3.3 基于盲信號分離的故障診斷 6
1.3.4 基于統(tǒng)計(jì)分析的故障診斷 6
1.3.5 改進(jìn)的PCA方法 9
1.3.6 基于指定元分析的方法 10
1.4 基于深度學(xué)習(xí)的故障診斷方法 11
1.4.1 基于淺層學(xué)習(xí)的故障診斷方法 11
1.4.2 深度學(xué)習(xí)的模型分類 12
1.4.3 基于深度學(xué)習(xí)的智能故障診斷研究現(xiàn)狀 13
1.5 非均衡數(shù)據(jù)深度學(xué)習(xí)故障診斷研究現(xiàn)狀 17
1.6 本章小結(jié) 18
參考文獻(xiàn) 19
第2章 基礎(chǔ)知識 27
2.1 引言 27
2.2 主元分析 27
2.3 指定元分析 30
2.4 小波濾波技術(shù) 31
2.5 反向傳播神經(jīng)網(wǎng)絡(luò) 32
2.6 深層神經(jīng)網(wǎng)絡(luò) 33
2.7 卷積神經(jīng)網(wǎng)絡(luò) 37
2.8 生成對抗網(wǎng)絡(luò) 39
2.9 本章小結(jié) 40
參考文獻(xiàn) 40
第3章 基于統(tǒng)計(jì)特征提取的故障檢測方法 42
3.1 擬多尺度主元分析理論及故障檢測應(yīng)用 42
3.1.1 故障的多尺度特性分析 42
3.1.2 擬多尺度主元分析 44
3.1.3 擬多尺度主元分析的檢測能力分析 51
3.1.4 擬MSRPCA故障檢測方法 54
3.1.5 擬MSRPCA仿真實(shí)驗(yàn)和分析 57
3.2 基于微分特征抽取的分層PCA動態(tài)故障檢測 60
3.2.1 基于PCA的動態(tài)故障檢測 61
3.2.2 基于微分特征抽取的分層PCA故障檢測方法 62
3.2.3 仿真和案例分析 64
3.3 本章小結(jié) 72
參考文獻(xiàn) 73
第4章 知識導(dǎo)引的統(tǒng)計(jì)特征抽取和故障診斷方法 74
4.1 非正交指定模式逐步DCA多故障診斷 74
4.1.1 主元分析的模式復(fù)合效應(yīng) 74
4.1.2 主元分析的有關(guān)結(jié)論 75
4.1.3 DCA的空間投影框架 77
4.1.4 逐步DCA多故障診斷方法 83
4.1.5 指定模式的定義 88
4.1.6 仿真研究 91
4.2 微小與未知故障診斷 96
4.2.1 基于DCA的多級微小故障診斷 97
4.2.2 未知故障診斷 108
4.3 船舶主機(jī)故障診斷應(yīng)用 117
4.3.1 船舶主柴油機(jī)故障診斷概述 117
4.3.2 研究對象 119
4.3.3 故障實(shí)驗(yàn)環(huán)境 126
4.3.4 船舶主柴油機(jī)故障診斷 127
4.4 本章小結(jié) 134
參考文獻(xiàn) 135
第5章 基于深度學(xué)習(xí)的頻率類故障診斷 136
5.1 引言 136
5.2 頻率類故障分析 136
5.3 基于深層神經(jīng)網(wǎng)絡(luò)的頻率類故障診斷 138
5.3.1 頻率類故障特征抽取 138
5.3.2 微分幾何特征融合 140
5.3.3 頻率類故障的在線診斷 140
5.4 實(shí)驗(yàn)與分析 144
5.4.1 仿真數(shù)據(jù)驗(yàn)證和分析 144
5.4.2 案例研究和分析 148
5.5 本章小結(jié) 153
參考文獻(xiàn) 153
第6章 基于多源異構(gòu)數(shù)據(jù)融合的深度學(xué)習(xí)故障診斷 154
6.1 引言 154
6.2 基于數(shù)據(jù)級融合的深度學(xué)習(xí)故障診斷 155
6.2.1 監(jiān)測中心屏幕截圖數(shù)據(jù)集構(gòu)建 155
6.2.2 基于數(shù)據(jù)級融合的深度學(xué)習(xí)故障診斷 156
6.2.3 實(shí)驗(yàn)與分析 161
6.3 基于特征級融合的深度學(xué)習(xí)故障診斷 172
6.3.1 基于交替優(yōu)化的深層特征融合方法 172
6.3.2 基于特征級融合的深度學(xué)習(xí)故障診斷 176
6.3.3 實(shí)驗(yàn)與分析 179
6.4 本章小結(jié) 189
參考文獻(xiàn) 189
第7章 基于分級深層神經(jīng)網(wǎng)絡(luò)的多模態(tài)故障診斷 190
7.1 引言 190
7.2 基于深層神經(jīng)網(wǎng)絡(luò)的故障診斷 190
7.3 基于分級深層神經(jīng)網(wǎng)絡(luò)的多模態(tài)故障診斷 191
7.4 實(shí)驗(yàn)與分析 196
7.4.1 實(shí)驗(yàn)平臺 196
7.4.2 數(shù)據(jù)描述 196
7.4.3 故障診斷結(jié)果 198
7.5 本章小結(jié) 208
參考文獻(xiàn) 208
第8章 基于全局優(yōu)化GAN的非均衡數(shù)據(jù)故障診斷方法 209
8.1 引言 209
8.2 基于全局優(yōu)化GAN的非均衡數(shù)據(jù)故障診斷 209
8.2.1 生成器設(shè)計(jì) 210
8.2.2 判別器設(shè)計(jì) 211
8.2.3 交替訓(xùn)練機(jī)制 212
8.3 實(shí)驗(yàn)與分析 216
8.3.1 數(shù)據(jù)描述與處理 216
8.3.2 實(shí)驗(yàn)結(jié)果分析 216
8.4 TE過程數(shù)據(jù)實(shí)驗(yàn)分析 222
8.4.1 數(shù)據(jù)描述 223
8.4.2 實(shí)驗(yàn)結(jié)果分析 222
8.5 本章小結(jié) 229

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號