《流體力學(xué)基礎(chǔ)=Essence of Fluid Mechanics:英漢對照》通過物理描述、理論分析和具體應(yīng)用求解相結(jié)合的邏輯方式,以淺顯易懂的語言全面介紹了流體力學(xué)的基礎(chǔ)知識,包括流體力學(xué)的基本概念、流體的性質(zhì)、流體靜力學(xué)、流體運(yùn)動學(xué)和動力學(xué)、流體流動的基本定律和基本方程以及邊界層理論等內(nèi)容,著重分析了黏性流動中的阻力、湍流、管道流動和圓柱繞流等幾個(gè)流體動力學(xué)問題?!读黧w力學(xué)基礎(chǔ)=Essence of Fluid Mechanics:英漢對照》在通俗地論述流體力學(xué)基本理論的基礎(chǔ)上,結(jié)合各章中給出的大量計(jì)算實(shí)例和練習(xí)題,對流體力學(xué)基本概念和理論進(jìn)行了理論聯(lián)系實(shí)際的闡述。
作者簡介
暫缺《流體力學(xué)基礎(chǔ)(英漢對照版)》作者簡介
圖書目錄
CONTENTS Preface Chapter 1 Basic Concepts 1 1.1 Introduction 1 1.2 Some Basic Facts About Fluid Mechanics 1 1.3 Fluids and the Continuum 5 1.4 The Perfect Gas Equation of State 7 1.5 Regimes of Fluid Mechanics 9 1.5.1 Ideal Fluid Flow 9 1.5.2 Viscous Incompressible Flow 10 1.5.3 Gas Dynamics 10 1.5.4 Rarefied Gas Dynamics 11 1.5.5 Flow of Multicomponent Mixtures 13 1.5.6 Non-Newtonian Fluid Flow 13 1.6 Dimension and Units 13 1.7 Law of Dimensional Homogeneity 14 1.8 Summary 17 1.9 Exercises 17 Chapter 2 Properties of Fluids 19 2.1 Introduction 19 2.2 Basic Properties of Fluids 19 2.2.1 Pressure of Fluids 20 2.2.2 Temperature 21 2.2.3 Density 22 2.2.4 Viscosity 23 2.2.5 Compressibility 28 2.3 Thermodynamic Properties of Fluids 29 2.3.1 Specific Heat 29 2.3.2 The Ratio of Specific Heats 30 2.3.3 Thermal Conductivity of Air 31 2.4 Surface Tension 32 2.5 Summary 34 2.6 Exercises 34 Chapter 3 Fluid Statics 36 3.1 Introduction 36 3.2 Scalar, Vector and Tensor Quantities 36 3.3 Body and Surface Forces 37 3.4 Forces in Stationary Fluids 38 3.5 Pressure Force on a Fluid Element 39 3.6 Basic Equations of Fluid Statics 40 3.6.1 Hydrostatic Pressure Distribution 41 3.6.2 Measurement of Pressures 43 3.6.3 Units and Scales of Pressure Measurement 46 3.7 The Atmosphere 46 3.7.1 The International Standard Atmosphere 47 3.7.2 Calculations on the Stratosphere 47 3.7.3 Calculations on the Troposphere 49 3.8 Hydrostatic Force on Submerged Surfaces 54 3.9 Buoyancy 56 3.10 Summary 57 3.11 Exercises 58 References 62 Chapter 4 Kinematics and Dynamics of Fluid Flow 63 4.1 Introduction 63 4.2 Description of Fluid Flow 63 4.2.1 Lagrangian and Eulerian Methods 63 4.2.2 Local and Material Rates of Change 64 4.2.3 Graphical Description of Fluid Motion 66 4.3 Basic and Subsidiary Laws 68 4.3.1 System and Control Volume 68 4.3.2 Integral and Differential Analysis 69 4.4 Basic Equation 69 4.4.1 Continuity Equation 70 4.4.2 Momentum Equation 70 4.4.3 Equation of State 72 4.4.4 Boundary Layer Equation 73 4.5 Rotational and Irrotational Motion 75 4.5.1 Circulation and Vorticity 75 4.5.2 Stream Function 76 4.5.3 Relationship Between Stream Function and Velocity Potential 77 4.6 Potential Flow 78 4.6.1 Two-Dimensional Source and Sink 81 4.6.2 Simple Vortex 82 4.6.3 Source-Sink Pair 84 4.6.4 Doublet 84 4.7 Flow Past a Half-Body—Combination of Simple Flows 88 4.8 Summary 97 4.9 Exercises 97 Chapter 5 Several Problems of Fluid Dynamics 114 5.1 Introduction 114 5.2 Viscous Flows 114 5.3 Drag of Bodies 117 5.3.1 Pressure Drag 118 5.3.2 Skin Friction Drag 124 5.3.3 Comparison of Drag of Various Bodies 125 5.4 Turbulence 128 5.5 Flow Through Pipes 136 5.6 Flow Past a Circular Cylinder Without Circulation 142 5.7 Flow Past a Circular Cylinder With Circulation 146 5.8 Summary 151 5.9 Exercises 151 References 162 Chapter 6 Boundary Layer 163 6.1 Introduction 163 6.2 Boundary Layer Development 164 6.3 Boundary Layer Thickness 167 6.3.1 Displacement Thickness 168 6.3.2 Momentum Thickness 170 6.3.3 Kinetic Energy Thickness 171 6.3.4 Non-Dimensional Velocity Profile 172 6.3.5 Types of Boundary Layer 173 6.4 Boundary Layer Flow 175 6.5 Boundary Layer Solutions 179 6.6 Momentum-Integral Estimates 179 6.6.1 Conservation of Linear Momentum 179 6.6.2 Karman’s Analysis of Flat Plate Boundary Layer 181 6.7 Boundary Layer Equations in Dimensionless Form 182 6.8 Flat Plate Boundary Layer 189 6.8.1 Laminar Flow Boundary Layer 190 6.8.2 Boundary Layer Thickness for Flat Plate 192 6.9 Turbulent Boundary Layer for Incompressible Flow Along a Flat Plate 201 6.10 Flows With Pressure Gradient 205 6.11 Laminar Integral Theory 206 6.12 Summary 214 6.13 Exercises 214 References 217 目錄 前言 第1章 基本概念 1 1.1 引言 1 1.2 流體力學(xué)概況 1 1.3 流體和連續(xù)介質(zhì) 5 1.4 完全氣體狀態(tài)方程 7 1.5 流體力學(xué)范疇 9 1.5.1 理想流體流動 9 1.5.2 黏性不可壓縮流動 10 1.5.3 氣體動力學(xué) 10 1.5.4 稀薄氣體動力學(xué) 11 1.5.5 多元混合流動 13 1.5.6 非牛頓流體流動 13 1.6 量綱和單位制 13 1.7 量綱一致性原理 14 1.8 小結(jié) 17 1.9 習(xí)題 17 第2章 流體的性質(zhì) 19 2.1 引言 19 2.2 流體的基本性質(zhì) 19 2.2.1 流體壓力 20 2.2.2 溫度 21 2.2.3 密度 22 2.2.4 黏性 23 2.2.5 可壓縮性 28 2.3 流體的熱力學(xué)性質(zhì) 29 2.3.1 比熱 29 2.3.2 比熱比 30 2.3.3 空氣的導(dǎo)熱性 31 2.4 表面張力 32 2.5 小結(jié) 34 2.6 習(xí)題 34 第3章 流體靜力學(xué) 36 3.1 引言 36 3.2 標(biāo)量、矢量和張量 36 3.3 體積力和表面力 37 3.4 靜止流體中的力 38 3.5 流體微元上的壓力合力 39 3.6 流體靜力學(xué)基本方程 40 3.6.1 流體靜壓分布 41 3.6.2 壓力測量 43 3.6.3 壓力測量單位和尺度 46 3.7 大氣 46 3.7.1 國際標(biāo)準(zhǔn)大氣 47 3.7.2 平流層計(jì)算 47 3.7.3 對流層計(jì)算 49 3.8 浸沒表面上的靜壓力 54 3.9 浮力 56 3.10 小結(jié) 57 3.11 習(xí)題 58 參考文獻(xiàn) 62 第4章 流體運(yùn)動學(xué)和動力學(xué) 63 4.1 引言 63 4.2 流體流動的描述 63 4.2.1 拉格朗日法和歐拉法 63 4.2.2 當(dāng)?shù)貙?dǎo)數(shù)和隨體(物質(zhì))導(dǎo)數(shù) 64 4.2.3 流體運(yùn)動的圖形化描述 66 4.3 基本定律和