作者簡介 弗拉基米爾·卓里奇(Vladimir A. Zorich)是莫斯科國立大學教授,主要從事分析、保角幾何、擬共形映照方面的研究工作。他解決了空間擬共形映照下的球面同胚問題,并因該研究成果獲得了“青年數(shù)學家國家獎”。作為莫斯科國立大學數(shù)學力學系高級實驗課程的組織者之一,他在一些大學中開設并教授現(xiàn)代分析學課程,并發(fā)表了大量的數(shù)學研究成果。
圖書目錄
圖書目錄 Prefaces 9. Continuous Mappings (General Theory) 10. Differential Calculus from a General Viewpoint 11. Multiple Integrals 12. Surfaces and Differential Forms in Rn 13. Line and Surface Integrals 14. Elements of Vector Analysis and Field Theory 15. Integration of Differential Forms on Manifolds 16. Uniform Convergence and Basic Operations of Analysis 17. Integrals Depending on a Parameter 18. Fourier Series and the Fourier Transform 19. Asymptotic Expansions Topics and Questions for Midterm Examinations Examination Topics Examination Problems (Series and Integrals Depending on a Parameter) Intermediate Problems (Integral Calculus of Several Variables) Appendix A. Series as a Tool (Introductory Lecture) Appendix B. Change of Variables in Multiple Integrals Appendix C. Multidimensional Geometry and Functions of a Very Large Number of Variables Appendix D. Operators of Field Theory in Curvilinear Coordinates Appendix E. Modern Formula of Newton-Leibniz References Index of Basic Notation Subject Index Name Index