注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)抽象代數(shù)基礎(chǔ)教程(第7版)

抽象代數(shù)基礎(chǔ)教程(第7版)

抽象代數(shù)基礎(chǔ)教程(第7版)

定 價(jià):¥139.00

作 者: [美] 約翰·弗雷利 著
出版社: 世界圖書出版公司
叢編項(xiàng):
標(biāo) 簽: 暫缺

ISBN: 9787519298852 出版時(shí)間: 2022-11-01 包裝: 平裝
開(kāi)本: 16開(kāi) 頁(yè)數(shù): 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  ◎內(nèi)容簡(jiǎn)介 本書是一部深入介紹抽象代數(shù)的入門書籍,被眾多讀者奉為經(jīng)典。本書旨在讓讀者盡可能多地了解群、環(huán)和域理論的相關(guān)知識(shí),尤其強(qiáng)調(diào)對(duì)代數(shù)結(jié)構(gòu)本質(zhì)的理解。為了便于學(xué)習(xí),全書分成了很多的小章節(jié),本書特色之一是基礎(chǔ)部分內(nèi)容詳實(shí),講解充分,給讀者講解每個(gè)定義、定理的來(lái)龍去脈,為讀者打下扎實(shí)的基礎(chǔ),對(duì)于讀者進(jìn)一步學(xué)習(xí)更深的代數(shù)大有助益。為了滿足更多讀者的需求,本書還包含了很多有關(guān)拓?fù)渲械耐{(diào)群和同調(diào)群的計(jì)算以加深對(duì)因子群的理解。作者的風(fēng)格是以一種自然易懂的方式來(lái)教授內(nèi)容,理論闡述清晰,條理分明,且大都以例子和練習(xí)的形式,便于直觀了解。書后附有不少習(xí)題,有助于加深學(xué)生對(duì)內(nèi)容的理解。讀者可以掃描世圖版全書最后一頁(yè)上的二維碼,加群獲取本書完整的習(xí)題解答。

作者簡(jiǎn)介

  ◎作者簡(jiǎn)介 約翰·弗雷利(John B. Fraleigh)是美國(guó)羅德島大學(xué)數(shù)學(xué)與應(yīng)用數(shù)學(xué)科學(xué)系的榮休教授,一生致力于數(shù)學(xué)教育,獲得了諸多贊譽(yù),羅德島大學(xué)還設(shè)立了以他名字命名的獎(jiǎng)學(xué)金。他出版過(guò)多部有影響力的數(shù)學(xué)教材,《抽象代數(shù)基礎(chǔ)教程》是其代表作之一,多年來(lái)一直被奉為經(jīng)典,長(zhǎng)銷不衰。

圖書目錄

◎圖書目錄
Preface
0. Sets and Relations
I. GROUPS AND SUBGROUPS
1. Introduction and Examples
2. Binary Operations
3. Isomorphic Binary Structures
4. Groups
5. Subgroups
6. Cyclic Groups
7. Generators and Cayley Digraphs
II. PERMUTATIONS, COSETS, AND DIRECT PRODUCTS
8. Groups of Permutations
9. Orbits, Cycles, and the Alternating Groups
10. Cosets and the Theorem of Lagrange
11. Direct Products and Finitely Generated Abelian Groups
12. Plane Isometries
III. HOMOMORPHISMS AND FACTOR GROUPS
13. Homomorphisms
14. Factor Groups
15. Factor-Group Computations and Simple Groups
16. Group Action on a Set
17. Applications of G-Sets to Counting
IV. RINGS AND FIELDS
18. Rings and Fields
19. Integral Domains
20. Fermat's and Euler's Theorems
21. The Field of Quotients of an Integral Domain
22. Rings of Polynomials
23. Factorization of Polynomials over a Field
24. Noncommutative Examples
25. Ordered Rings and Fields
V. IDEALS AND FACTOR RINGS
26. Homomorphisms and Factor Rings
27. Prime and Maximal Ideas
28. Groebner Bases for Ideals
VI. EXTENSION FIELDS
29. Introduction to Extension Fields
30. Vector Spaces
31. Algebraic Extensions
32. Geometric Constructions
33. Finite Fields
VII. ADVANCED GROUP THEORY
34. Isomorphism Theorems
35. Series of Groups
36. Sylow Theorems
37. Applications of the Sylow Theory
38. Free Abelian Groups
39. Free Groups
40. Group Presentations
VIII. AUTOMORPHISMS AND GALOIS THEORY
41. Automorphisms of Fields
42. The Isomorphism Extension Theorem
43. Splitting Fields
44. Separable Extensions
45. Totally Inseparable Extensions
46. Galois Theory
47. Illustrations of Galois Theory
48. Cyclotomic Extensions
49. Insolvability of the Quintic
Appendix: Matrix Algebra
Bibliography
Notations
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)