注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當前位置: 首頁出版圖書科學技術(shù)醫(yī)學預(yù)防醫(yī)學、衛(wèi)生學智能中醫(yī)信息處理技術(shù)與應(yīng)用(英文版)

智能中醫(yī)信息處理技術(shù)與應(yīng)用(英文版)

智能中醫(yī)信息處理技術(shù)與應(yīng)用(英文版)

定 價:¥49.00

作 者: 阿孜古麗·吾拉木、謝永紅、張德政
出版社: 清華大學出版社
叢編項:
標 簽: 暫缺

ISBN: 9787302582861 出版時間: 2021-08-01 包裝: 平裝-膠訂
開本: 16開 頁數(shù): 字數(shù):  

內(nèi)容簡介

  The past decades have witnessed the rapid advancements of computational intelligence techniques, including big data, machine learning, and knowledge engineering, in both industrial and academic communities. Specifically, with the diffusion of some computing paradigms such as natural language processing, knowledge graph, reasoning decision, it promotes the computer-assisted diagnosis and treatment in Traditional Chinese Medicine (TCM). Through the integration of our research achievements in the field of intelligent information processing on TCM over the last decade, this book introduces the data processing technologies in TCM medical records and TCM medication, the medical records-based knowledge acquisition, the text-based knowledge acquisition, and the applications of TCM knowledge. We would like to provide a guidance for graduate students, university teachers and professional technicians engaged in knowledge engineering and TCM informatization.

作者簡介

  阿孜古麗·吾拉木,北京科技大學計算機與通信工程學院教授,博導(dǎo);北京科技大學材料領(lǐng)域知識工程北京市重點實驗室副主任,主要研究方向為知識工程、知識圖譜、深度學習、人工智能。近年來,結(jié)合類腦智能技術(shù),從感知的注意力機制、記憶學習以及推理技術(shù)等角度,研究形成自然語言實體與關(guān)系提取技術(shù)、大規(guī)模知識圖譜、知識庫構(gòu)造與推理技術(shù),以及人工智能知識工程應(yīng)用技術(shù)。承擔國家863、國家科技支撐、國家重點研發(fā)計劃以及北京市省部級課題等30余項。組織實施了北京市科委重大項目“重點行業(yè)信息化知識庫建設(shè)”、研發(fā)“大數(shù)據(jù)征信服務(wù)平臺”、“工業(yè)大數(shù)據(jù)平臺”及“大數(shù)據(jù)驅(qū)動智能診斷系統(tǒng)”等,承擔科技部、北京市科委條件平臺建設(shè),參與多個智慧城市頂層設(shè)計,擔任科技部、北京市科委專家。項目研究成果授權(quán)發(fā)明專利2項,申請發(fā)明專利6項,獲得北京市科學技術(shù)獎二等獎、北京市科學技術(shù)進步三等獎、冶金科學技術(shù)一等獎、冶金礦山科學技術(shù)獎特等獎等,出版了《創(chuàng)新理論與實現(xiàn)技術(shù)》、《行業(yè)信息化知識庫建設(shè)實現(xiàn)技術(shù)》、《科技與生活同行》、《科學你我他》等系列著作,發(fā)表學術(shù)論文40余篇。

圖書目錄

1  Data Processing Technology in TCM Records 1
1.1  Structural Technology Research on Symptom Data 1
1.1.1  Analyze the Symptoms 2
1.1.2  Structure the Symptoms 4
1.1.3  Conclusions 7
1.2  Semantic Feature Expansion Technology Based on Knowledge Graph 7
1.2.1  Knowledge Graph and Feature Acquisition Analysis 8
1.2.2  Symptom Normalization in TCM 9
1.2.3  Acquisition of Semantic Features Based on Knowledge Path 13
1.2.4  Experiment Analysis 16
1.2.5  Conclusions 21
1.3  Medical Case Retrieval Method Based on Machine Learning 22
1.3.1  Medical Record Representation 22
1.3.2  Case Retrieval Based on Learning Ranking 25
1.3.3  Experiment and Analysis 28
1.3.4  Conclusions 32
2  Data Processing Technology in TCM Medication 33
2.1  An Intelligent Medication Matching Method for TCM 33
2.1.1  Measure the Correlation between Medications 33
2.1.2  Random Walk Similarity of Nodes 37
2.1.3  The Graph Clustering 39
2.1.4  Experiment 39
2.2  The Core Medications Analysis Based on Social Network Analysis 41
2.2.1  The Social Network Construction about Semantic Relations of 
      TCM Records 41
2.2.2  Core Medications Analysis Based on Social Network Analysis 42
2.2.3  The Implementation of Core Medications Algorithms 46
2.2.4  Conclusions 48
2.3  Analysis and Mining of Core Prescription Using Fuzzy Cognitive Map 48
2.3.1  Construction of Fuzzy Cognitive Map 49
2.3.2  Realization of Core Prescription Mining 51
2.3.3  Systematic Review 55
2.3.4  Conclusions 57
3  The Medical Records-based Knowledge Acquisition 59
3.1  Centrality Research on the Traditional Chinese Medicine Network 59
3.1.1  Basic Thought and Concept 60
3.1.2  Method to Calculate Betweenness Centrality 62
3.1.3  Betweenness Centrality Algorithm 63
3.1.4  Example Analyses 64
3.1.5  Conclusions 66
3.2  Cognitive Induction Based Knowledge Acquisition 66
3.2.1  Data Preprocessing 66
3.2.2  Inductive Logic Based Inductive Learning Algorithm 68
3.2.3  Graph-based Inductive Learning Algorithm 71
3.2.4  Application of Inductive Learning Algorithm 73
3.3  Analysis on Interactive Structure of Knowledge Acquisition 77
3.3.1  Relevant Work 78
3.3.2  Structural Modeling Analyzing 79
3.3.3  Construction of Structural Model 81
3.3.4  Algorithms 81
3.3.5  Verification & Application 82
3.3.6  Conclusions 84
3.4  Application of Structural Analysis in Knowledge Acquisition of 
Traditional Chinese Medicine 84
3.4.1  Structural Modeling 85
3.4.2  Arithmetic and Analysis 87
3.4.3  Application Example 88
3.4.4  Conclusions 91
4  Text-based Knowledge Acquisition 93
4.1  Knowledge Acquisition Based on Open Data Source 93
4.2  Unsupervised TCM Text Segmentation Combined with Domain Dictionary 101
4.2.1  Related Work 102
4.2.2  Method 103
4.2.3  Experience 106
4.2.4  Conclusions 109
4.3  A Phrase Mining Method for TCM 110
4.3.1  Methods 110
4.3.2  Results 115
4.3.3  Conclusions 117
4.4  Improving Distantly-Supervised Named Entity Recognition 117
4.4.1  Related work 119
4.4.2  NER Scheme 120
4.4.3  Experiment 127
4.4.4  Relation Extraction Frame 132
4.5  Nested Named Entity Recognition Method 133
4.5.1  Methodology 135
4.5.2  Experiments 137
4.5.3  Conclusions 141
5  Application of Knowledge of TCM 143
5.1  Fuzzy Ontology Constructing and its Application in TCM 143
5.1.1  Structure of Fuzzy Ontology 143
5.1.2  Application of Fuzzy Ontology 147
5.1.3  Conclusions 150
5.2  Personalized Diagnostic Modal Discovery of TCM Knowledge Graph 150
5.2.1  Access to Medical Data and Normalization 150
5.2.2  Obtain the Medical Records Node and Get the Path and Storage 153
5.2.3  Overlay All Medical Path Results 157
5.2.4  Using the Template 159
5.2.5  Result Analysis 160
5.2.6  Conclusions 168
5.3  Assistant Diagnostic Method of TCM 168
5.3.1  Data Pretreatment 169
5.3.2  Research on Integrated Diagnosis Based on Multi Classification 170
5.3.3  Conclusions 176
5.4  Auxiliary Diagnosis Based on the Knowledge Graph of TCM Syndrome 177
5.4.1  Related Work 177
5.4.2  TCM Diagnosis Path Discovery 181
5.4.3  Meta-path Based on Reasoning Strategy 182
?
5.4.4  Experiment 186
5.4.5  Conclusions 189
References 191
Figure List 195
Table List 199
 

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號