Contents Chapter 1 Introduction 1 1.1 Drivers, concepts and characteristics of international projects 1 1.2 Concepts and key features of construction megaprojects 3 1.3 International project delivery systems 6 1.4 Global railway construction markets 14 1.5 Introduction of risk management 16 1.6 Channel Tunnel Rail Link risk transfer and innovation in project delivery 28 Exercises and Discussions 39 Chapter 2 Risk Management Principles, Frameworks and Processes 40 2.1 Introduction 40 2.2 Risk management principles 40 2.3 Risk management conceptual frameworks 44 2.4 Risk management process 48 Exercises and Discussions 57 Chapter 3 Legal Systems, Contracts, and Legal Risks 58 3.1 Introduction 58 3.2 Governing law system 58 3.3 Different types of legal systems 59 3.4 Differences between common law system and civil law system 60 3.5 International engineering and construction contracts 68 3.6 Legal risks in international railway projects 75 Exercises and Discussions 80 Chapter 4 Project Risk Formation Mechanisms 82 4.1 Construction accident formation mechanisms 82 4.2 PPP/BOT transportation project failure mechanisms 90 4.3 International railway project loss mechanisms 111 4.4 International railway project loss case 112 Exercises and Discussions 115 Chapter 5 Risk Identification Techniques 116 5.1 Introduction 116 5.2 Assumptions and constraints analysis 117 5.3 Scenario analysis 117 5.4 Flow diagram 119 5.5 SWOT Analysis 120 5.6 Cause and effect diagrams 125 5.7 Checklists 126 Exercises and Discussions 131 Chapter 6 Sensitivity Analysis, Bayesian Analysis and Decision Tree Analysis 132 6.1 Sensitivity analysis 132 6.2 Bayesian analysis 135 6.3 Decision tree analysis 138 Exercises and Discussions 142 Chapter 7 Preliminary Hazard Analysis, Influence diagrams technique and Z-Matrix 143 7.1 Preliminary hazard analysis 143 7.2 Influence diagrams 154 7.3 Z-Matrix 160 Exercises and Discussions 162 Chapter 8 Event Tree Analysis and Fault Tree Analysis 163 8.1 Introduction 163 8.2 Event tree analysis 164 8.3 Fault tree analysis 168 Exercises and Discussions 180 Chapter 9 Monte Carlo Simulation 181 9.1 Commonly used probability distributions in engineering 181 9.2 Basics of Monte Carlo simulation 187 9.3 Generation of random numbers 187 9.4 CDF-inverse method(continuous case)188 9.5 Acceptance-rejection method 189 9.6 Generation random variates from probability distributions 189 9.7 Variance-reduction techniques 191 9.8 Monte Carlo simulation case 192 Exercises and Discussions 202 Chapter 10System dynamics 203 10.1 Historical overview of the system dynamics approach203 10.2 Causal loop diagrams and stock and flow diagrams204 10.3 Procedures for using the system dynamics method206 10.4 Application case of system dynamics208 Exercises and Discussions 215 Chapter 11Project Risk Early Earning 216 11.1 Introduction 216 11.2 Earned-value-management-based project schedule and cost early warning 218 11.3 Earned-schedule-based project schedule early warning 220 11.4 Dynamic-control threshold-based project schedule early warning 222 Exercises and Discussions 226 Chapter 12 Construction Insurance and Surety Bonds 227 12.1 Introduction 227 12.2 Insurance for international railway engineering projects 227 12.3 Surety bonds for international railway engineering projects 237 Exercises and Discussions 248 Chapter 13 Variations, Claims and Disputes 249 13.1 Introduction 249 13.2 Variations in construction 249 13.3 Claims in construction 254 13.4 Disputes in construction 258 Exercises and Discussions 266 References 267