注冊(cè) | 登錄讀書(shū)好,好讀書(shū),讀好書(shū)!
讀書(shū)網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書(shū)科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)非交換幾何、規(guī)范理論和重整化:一般簡(jiǎn)介與非交換量子場(chǎng)論的重整化(英文)

非交換幾何、規(guī)范理論和重整化:一般簡(jiǎn)介與非交換量子場(chǎng)論的重整化(英文)

非交換幾何、規(guī)范理論和重整化:一般簡(jiǎn)介與非交換量子場(chǎng)論的重整化(英文)

定 價(jià):¥78.00

作 者: [法] 阿克塞爾·德·古薩克
出版社: 哈爾濱工業(yè)大學(xué)出版社
叢編項(xiàng):
標(biāo) 簽: 暫缺

購(gòu)買(mǎi)這本書(shū)可以去


ISBN: 9787560396514 出版時(shí)間: 2021-09-01 包裝: 平裝-膠訂
開(kāi)本: 32開(kāi) 頁(yè)數(shù): 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  《非交換幾何、規(guī)范理論和重整化:一般簡(jiǎn)介與非交換量子場(chǎng)論的重整化(英文)》是一部英文版的數(shù)學(xué)專(zhuān)著,中文書(shū)名或可譯為《非交換幾何、規(guī)范理論和重整化:一般簡(jiǎn)介與非交換量子場(chǎng)論的重整化》?,F(xiàn)在,非交換幾何在數(shù)學(xué)上是一個(gè)新興發(fā)展的領(lǐng)域,同時(shí)也呈現(xiàn)為前景可觀的現(xiàn)代物理學(xué)框架,非交換空間上的量子場(chǎng)論確實(shí)需要全面的探索,并且得到新的有趣的特征,《非交換幾何、規(guī)范理論和重整化:一般簡(jiǎn)介與非交換量子場(chǎng)論的重整化(英文)》提供了一個(gè)對(duì)非交換幾何、畸變量子化與量子場(chǎng)論的重整化:Wilson和BPHZ的對(duì)標(biāo)量理論的方法以及對(duì)規(guī)范理論的代數(shù)方法的基本概念的教育性的介紹?!斗墙粨Q幾何、規(guī)范理論和重整化:一般簡(jiǎn)介與非交換量子場(chǎng)論的重整化(英文)》能夠幫助讀者理解幾個(gè)一般性的非交換量子場(chǎng)論的問(wèn)題,基于作者的博士論文,《非交換幾何、規(guī)范理論和重整化:一般簡(jiǎn)介與非交換量子場(chǎng)論的重整化(英文)》給出了歐氏Moyal空間上的量子場(chǎng)論的重整化問(wèn)題的概覽,并且特別著重于Grosse-Wulkenhaar模型,以及與其相關(guān)的規(guī)范理論和其數(shù)學(xué)解釋?!斗墙粨Q幾何、規(guī)范理論和重整化:一般簡(jiǎn)介與非交換量子場(chǎng)論的重整化(英文)》適用于想要理解這個(gè)前沿的數(shù)學(xué)和物理研究領(lǐng)域的研究生和科研人員。

作者簡(jiǎn)介

暫缺《非交換幾何、規(guī)范理論和重整化:一般簡(jiǎn)介與非交換量子場(chǎng)論的重整化(英文)》作者簡(jiǎn)介

圖書(shū)目錄

Introduction 
1    Introduction to Noncommutative Geometry 
    1.1    Topology and C*-algebras 
        1.1.1    Definitions 
        1.1.2    Spectral theory 
        1.1.3    Duality in tile commutative case 
        1.1.4    GNS construction 
        1.1.5    Vector bundles and projective modules 
    1.2    Measure theory and yon Neumann algebras 
        1.2.1    Definition of von Neumann algebras 
        1.2.2    Duality in the commutative case 
    1.3    Noncommutative differential geometry 
        1.3.1    Algebraic geometry 
        1.3.2    Differential calculi 
        1.3.3    Hochschild and cyclic homologies 
        1.3.4    Spectral triples 
2    Epsilon-graded algebras noncommutative geometry 
    2.1    General theory of the ε-graded algebras 
        2.1.1    Commutation factors and multipliers 
        2.1.2    Definition of ε-graded algebras and properties 
        2.1.3    Relationship with superalgebras 
    2.2    Noncommutative ε-graded geometry 
        2.2.1    Differential calculus 
        2.2.2    ε-connections and gauge transformations 
        2.2.3    Involutions 
    2.3    Application to some examples of ε-graded algebras 
        2.3.1    ε-graded commutative algebras 
        2.3.2    ε-graded matrix algebras with elementary grading 
        2.3.3    ε-graded matrix algebras with fine grading 
3    An Introduction to Renormalization of QFT 
    3.1    Renormalization of scalar theories in the wilsonian approach 
        3.1.1    Scalar field theory 
        3.1.2    Effective action and equation of the renormalization grour 
        3.1.3    Renormalization of the usual ψ4 theory in four dimensions 
    3.2    BPHZ renormalization 
        3.2.1    Power-counting 
        3.2.2    BPHZ subtraction scheme 
        3.2.3    Beta functions 
    3.3    Renormalization of gauge theories 
        3.3.1    Classical theory and BRS formalism 
        3.3.2    Algebraic renormalization 
4    QFT on Moyal space 
    4.1    Presentation of the Moyal space 
        4.1.1    Deformation quantization 
        4.1.2    The Moyal product on Schwartz functions 
        4.1.3    The matrix basis 
        4.1.4    The Moyal algebra 
        4.1.5    The symplectic Fourier transformation 
    4.2    UV/IR m/x.ing on the Moyal space 
    4.3    Renormalizable QFT on Moyal space 
        4.3.1    Renormalization of the theory with harmonic term 
        4.3.2    Principal properties 
        4.3.3    Vacuum configurations 
        4.3.4    Possible spontaneous symmetry breaking? 
        4.3.5    Other renormalizable QFT on Moyal space 
5    Gauge theory on the Moyal space 
    5.1    Definition of gauge theory 
        5.1.1    Gauge theory associated to standard differential calculus 
        5.1.2    U(N) versus U(1) gauge theory 
        5.1.3    UV/IR mixing in gauge theory 
    5.2    The effective action 
        5.2.1    Minimal coupling 
        5.2.2    Computation of the effective action 
        5.2.3    Discussion on the effective action 
    5.3    Properties of the effective action 
        5.3.1    Symmetries of vacuum configurations 
        5.3.2    Equation of motion 
        5.3.3    Solutions of the equation of motion 
        5.3.4    Minima of the action 
        5.3.5    Extension in higher dimensions 
    5.4    Interpretation of the effective action 
        5.4.1    A superalgebra constructed from Moyal space 
        5.4.2    Differential calculus and scalar theory 
        5.4.3    Graded connections and gauge theory 
        5.4.4    Discussion and interpretation 
Conclusion 
Bibliography 
編輯手記 
 

本目錄推薦

掃描二維碼
Copyright ? 讀書(shū)網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)