注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)基于copula的相關(guān)性測度

基于copula的相關(guān)性測度

基于copula的相關(guān)性測度

定 價(jià):¥68.00

作 者: 單青松
出版社: 經(jīng)濟(jì)管理出版社
叢編項(xiàng):
標(biāo) 簽: 暫缺

ISBN: 9787509661871 出版時間: 2020-10-01 包裝: 平裝-膠訂
開本: 16開 頁數(shù): 字?jǐn)?shù):  

內(nèi)容簡介

  Copula 在應(yīng)用統(tǒng)計(jì)領(lǐng)域,如金融、氣象、水文等有廣泛的應(yīng)用。本書從copula視角介紹了變量間幾種相關(guān)性的度量,著重討論了變量之間函數(shù)型關(guān)系強(qiáng)弱的基于copula的度量。 變量間的函數(shù)型關(guān)系是一種較為廣泛的概念,既包括了常見的線性關(guān)系、非線性單調(diào)關(guān)系,也包括了目前較少討論的非單調(diào)關(guān)系。因此本文的工作具有廣泛的適用性。同時也為非線性關(guān)系的度量提供了另一種思路。函數(shù)型關(guān)系是一個比線性關(guān)系、單調(diào)型關(guān)系更廣泛的概念,本書分別針對離散型和連續(xù)型函數(shù)關(guān)系作了討論。對離散型變量構(gòu)造了幾種基于subcopula的測度, 并討論了這些測度的理論性質(zhì)。對連續(xù)性變量的測度,主要從非參數(shù)核密度估計(jì)入手構(gòu)造了其非參數(shù)估計(jì)。討論了其漸進(jìn)性質(zhì),并給出了數(shù)值模擬結(jié)果。

作者簡介

  單青松,201 5年獲美國新墨西哥州立大學(xué)數(shù)理統(tǒng)計(jì)博士學(xué)位?,F(xiàn)任江西財(cái)經(jīng)大學(xué)統(tǒng)計(jì)學(xué)院講師,Journal of Nonparametric Statistfcs、Scan-dinavian Journal of Statistics審稿人。主要研究方向?yàn)榉菂?shù)統(tǒng)計(jì)和Copula理論。

圖書目錄

1 Outline and Summary
1.1 Introduction
1.2 Outline
2 Statistical Modeling and Measurement of Association
2.1 The concept of copulas
2.2 Nonparametric estimations of copula
2.2.1 An overview of empirical processes
2.2.2 Nonparametric estimation via the empirical copula
2.2.3 Functional delta-method and hadamard differentiability
2.2.4 Weak convergence of the empirical copula process
2.2.5 Nonparametric kernel estimations
2.2.6 Bias and variance of kernel density estimator
2.2.7 Optimal bandwith
2.3 Measures of association and dependence
2.3.1 Pearson's corelation coefficient
2.3.2 Spearman's ρ and Kendall's τ
2.3.3 The measure for mutual complete dependence
2.3.4 The * operator and the measure of mutual complete dependence
3 A Measure for Positive Quadrant Dependence
4 Measures for Discrete MCD and Functional Dependence
4.1 The measure of MCD through conditional distributions
4.2 The measure of MCD through a subcopula
4.3 Comparison to Siburg and Stoimenov's measure of MCD
4.3.1 Extension using E-process
4.3.2 Bilinear extension
4.4 Remarks on measures of dependence
4.5 Other measures
4.5.1 The measure μ20
4.5.2 The measure λ
4.5.3 Construction of the measure
4.5.4 Proofs of the construction of λ
5 Nonparametric Estimation of the Measure of Functional Dependence
5.1 Nonparametric estimation through the density of copula
5.1.1 Estimating with pseudo-observations
5.1.2 Kernel estimation through copula density functions
5.1.3 Asymptotic behavior of the estimator of functional dependence
5.2 Nonparametric estimation of the measure of MCD via copula
5.3 Simulation results
6 Implementation and Simulations
6.1 Choosing the evaluation grid
6.2 Simulation
6.3 Comparison of measures
7 Application
8 Discussion
References
Appendix
A List of Symbols
B Calculation of the Measure of PQD
C Beta Kernel Estimation
D Kernel Estimation
E FDM of variables in crime dataset

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號