注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)非線性擴散方程:趙俊寧教授論文選

非線性擴散方程:趙俊寧教授論文選

非線性擴散方程:趙俊寧教授論文選

定 價:¥128.00

作 者: 趙俊寧 著
出版社: 廈門大學(xué)出版社
叢編項:
標 簽: 暫缺

購買這本書可以去


ISBN: 9787561583975 出版時間: 2021-11-01 包裝: 精裝
開本: 16開 頁數(shù): 665 字數(shù):  

內(nèi)容簡介

  本書為趙俊寧教授從事科研工作所發(fā)表的論文選集,內(nèi)容包含擬線性退化拋物和橢圓方程的可解性問題、自由邊界問題、解的漸進性質(zhì),以及Navier-Stokes方程的適定性理論研究成果;具體表現(xiàn)為利用BV估計技巧解決了一維具對流項的擬線性弱退化拋物方程有界可測解的唯一性問題,以及高維強退化擬線性拋物方程BV解的唯一性;將偏微分方程理論應(yīng)用到對一般的滲流方程討論源型奇異解的存在性和非存在性問題,為源型奇異解的研究提供了一個新的途徑等。

作者簡介

暫缺《非線性擴散方程:趙俊寧教授論文選》作者簡介

圖書目錄

第一章 擬線性退化拋物方程的可解性
1.The first boundary value problem for quasilinear degenerate parabolic equations of second order in several space variables. Chin. Ann. Math. Ser. B 4 (1983), no.1,57-76.(with Zhuoqun Wu)
2.Some general results on the first boundary value problem for quasilinear degenerate parabolic equations. Chin. Ann. Math. Ser. B 4 (1983), no. 3, 319-328. (withZhuoqun Wu)
3.具非負特征形式的二階擬線性方程第一邊值問題.數(shù)學(xué)年刊,A輯,第4卷(1983),第4期、475-486
4.Uniqueness of solutions of quasilinear degenerate parabolic equations. Northeastern Math. J. 1 (1985), no. 2, 153-165
5.Applications of theory of compensated compactness to quasilinear degenerate parabolic equations and quasilinear degenerate elliptic equations. Northeastern Math. J.(1986), no. 1, 33-48
6.Source-type solutions of the porous media equation with absorption: the fast diffusion case. Nonlinear Anal. 14 (1990), no. 2, 107–121.(with Peletier L.A)
7.Source-type solutions of degenerate quasilinear parabolic equations. J. Differential Equations 92 (1991), no. 2, 179–198
8.Uniqueness of Solutions for Higher Dimensional Quasilinear Degenerate Parabolic Equation. Chin. Ann. Of Math. Ser. B 13 (1992), no. 2 129-136
Existence and Nonexistence of Solutions for u, = div (Vu)p-2Vu) + f(Vu, u, x, t). J Math. Anal. Appl. 172 (1993), no. 1, 130-146
10. Source-type solutions of a quasilinear degenerate parabolic equation with absorp-tion. Chin. Ann. Math. Ser. B 15 (1994), no.1, 89–104
11. Uniqueness of the solutions of u, = Au and u, = Au - uP when initial datum ameasures: the fast diffusion case, J. Partial Diff Eqs. 7 (1994), 143–159. (withHongjun Yuan)
12. On the Cauchy problem and initial traces for the evolution p-Laplacian equationswith strongly nonlinear sources. J. Differential Equations 121 (1995), no. 2,
13. Singular solutions for a convection diffusion equation with absorption. Acta Math Sci. 15 (1995), no. 4, 431-441
14. The Cauchy problem for u, = div(|Vu|p-2Vu) when 2N/(N + 1) ( p ( 2. NonlinearAnal. 24 (1995), no. 5, 615-630
15. The Cauchy problem and initial traces for a doubly nonlinear degenerate parabolic equa-tion. Sci. China Ser. A 39 (1996), no. 7, 673-684. (with Zhonghai Xu).
16. Uniqueness and stability of solutions for Cauchy problem of nonlinear diffusionequations. Sci. China Ser. A 40 (1997), no. 9, 917-925.(with Peidong Lei) .
17.On the Cauchy problem of evolution p-Laplacian equations with strongly nonlinear sources when 1 ( p ( 2. Acta Math. Sinica, Eng. Ser. 17(2001), no. 3, 455–470.(with Peidong Lei)
18.BV Solutions of Dirichlet Problem for a Class of Doubly Nonlinear Degenerate Parabolic Equations. J. Partial Diff. Eqs. 17 (2004), 241-254. (with Peigong Han) .
19.Uniqueness and stability of solution of Cauchy problem of degenerate quasilinearparabolic equations. Sci. China Ser. A 48 (2005), no. 5,583–593. (with HuashuiZhan)
20.Existence and uniqueness of renormalized solutions for a class of degenerate parabol-ic equations. Acta Math. Sci. Ser. B 29 (2009), no. 2, 251-264. (with Liqin Zhang)
21.On the Cauchy problem of evolution p-Laplacian equation with nonlinear gradientterm.Chin. Ann. Math. Ser. B 30 (2009), no. 1, 1–16. (with Mingyu Chen) .
22.The first boundary value problem for a class of quasilinear degenerate elliptic equa-tions. Acta Math. Sci. Ser. B 25 (2005),no.4,577–586. (with Xiaoming Zeng) . .
第二章 擬線性退化拋物方程解的性質(zhì)
1.Continuity of solutions for a class of quasilinear degenerate parabolic equations. Northeastern Math. J. 7 (1991), no. 3, 356-365
2.Some Properties of Solutions of Quasilinear Degenerate Parabolic Equations and Quasilinear Degenerate Elliptic Equations. Northeastern. Math. J. 2 (1986), no. 3,281-302.
3.Lipschitz continuity of solutions and interfaces of the evolution p-Laplacian equa-tion. Northeastern Math. J. 8 (1992), no. 1, 21-37.(with Hongjun Yuan)
4.The asymptotic behaviour of sol

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號