李杰,同濟大學(xué)特聘教授,博士生導(dǎo)師,上海防災(zāi)救災(zāi)研究所所長。1998年獲國家杰出青年科學(xué)基金,1999年入選教育部“長江學(xué)者獎勵計劃”首批特聘教授?,F(xiàn)兼任國際結(jié)構(gòu)安全性與可靠性協(xié)會(IASSAR)執(zhí)委會執(zhí)委、國際土木工程風(fēng)險與可靠性協(xié)會(CERRA)主席團成員,Structural Safety、International Journal of Nonlinear Mechanics等刊編委,中國振動工程學(xué)會副理事長、隨機振動專業(yè)委員會主任,中國建筑學(xué)會結(jié)構(gòu)計算理論專業(yè)委員會主任等學(xué)術(shù)職務(wù)。長期從事結(jié)構(gòu)工程、地震工程、隨機動力學(xué)和工程可靠性理論研究工作,在隨機動力學(xué)、工程結(jié)構(gòu)可靠度與生命線工程研究中取得了具有國際影響力的研究成果。2015年,工程結(jié)構(gòu)抗災(zāi)可靠性設(shè)計的概率密度演化理論獲得國家自然科學(xué)二等獎;2014年,因在概率密度演化理論與生命線工程可靠性方面的學(xué)術(shù)成就、被美國土木工程師學(xué)會(ASCE)授予Freudenthal獎?wù)拢?013年,因在隨機動力學(xué)與生命線工程可靠性方面的學(xué)術(shù)成就、被丹麥王國奧爾堡大學(xué)授予榮譽博士學(xué)位;另外,圍繞研究方向曾獲國家科技進步獎以及上海市科技進步一等獎等科技獎勵30余項。著有5部學(xué)術(shù)專。在國內(nèi)外發(fā)表學(xué)術(shù)期刊論文400余篇,其中SCI收錄120余篇、EI收錄260余篇,研究論著被引用7000余次。劉威,博士、倫斯勒理工學(xué)院訪問學(xué)者訪問,同濟大學(xué)土木工程學(xué)院副教授。專長于生命線地震工程領(lǐng)域,從事生命線地震工程研究。在國內(nèi)外學(xué)術(shù)期刊及國際學(xué)術(shù)會議發(fā)表研究論文70余篇,其中SCI收錄18篇,獲上海市科學(xué)技術(shù)進步獎一等獎1項。
圖書目錄
1 Introduction .1 1.1Lifeline Engineering Systems1 1.2Damages of Lifeline Systems in Past Earthquakes ..3 1.3Main Content of the Book7 References ..8 2 Seismic Hazard Assessment11 2.1 Introduction ..11 2.2 Uncertainty and Probability Model ..11 2.2.1 Earthquake Occurrence Probability Model ..12 2.2.2 Potential SeismicZone .13 2.2.3 Probability Distribution Function of Earthquake Magnitude.15 2.2.4 Ground Motion Attenuation 16 2.3 Seismic Hazard Analysis Method . 17 2.3.1 Point-Source Model .17 2.3.2 Line-Source Model .20 2.3.3 Area-Source Model 21 2.3.4 Probability Distribution Function of Ground Motion Amplitude21 References23 3 Seismic Ground Motion Model . 25 3.1Introduction.25 3.2 Statistically-Based Model 26 3.2.1 Stationary and Non-stationary Processes 26 3.2.2 One-Dimensional Stochastic Process Model28 3.2.3 Random Field Model 30 3.3 Physically-Based Model .34 3.3.1 Fourier Spectral Form of One-Dimensional Ground Motion 34 3.3.2 Seismic Source Spectrum..35 3.3.3 Transfer Function of the Path 37 3.3.4 LocalSite Effect . 38 3.3.5 One-Dimensional Ground Motion Model .40 3.3.6 Physical Random Field Model of Ground Motions ..41 References .43 4 Seismic Performance Evaluation of Buried Pipelines . 45 4.1 Seismic Damage of Buried Pipelines .45 4.1.1 Pipeline Damage in Past Earthquakes ..45 4.1.2 Damage Characteristics of Buried Pipelines .46 4.1.3 Factors Affecting Buried Pipeline Damages . 47 4.1.4 Empirical Statistics of Damage Ratio 48 4.2 Seismic Response Analysis of Buried Pipelines 51 4.2.1 Pseudo-static Analysis Method .51 4.2.2 Pipeline Stress Computation 58 4.3 Seismic Response Analysis of Pipeline Networks . 60 4.4 Seismic Reliability Evaluation of Buried Pipeline 64 4.4.1 Uncertainty of Pipeline Resistance 64 4.4.2 Seismic Reliability Analysis of Buried Pipelines . 65 References.67 5 Seismic Response Analysis of Structures ..69 5.1 Structural Analysis Model 69 5.1.1 General Finite Element Model..69 5.1.2 Seismic Analysis Model of Structure-Equipment Systems..75 5.1.3 Dynamic Analysis Model of Structure Subject to Multi-point Ground Motions .79 5.2 Deterministic Seismic Response Analysis of Structures . 81 5.2.1 Linear Acceleration Algorithm 82 5.2.2 Generalized α-Algorithm 85 5.3 Stochastic Seismic Response Analysis of Structures .88 5.3.1 Principle of Preservation of Probability. 88 5.3.2 The Generalized Probability Density Evolution Equation .90 5.3.3 Numerical Method for Solving General Probability Density Evolution Equation ..92 5.4 Seismic Reliability Analysis of Structures .96 References..99 6 Seismic Reliability Analysis of Engineering Network (D—Connectivity Reliability..101 6.1 Introduction .101 6.2 Foundation of System Reliability Analysis 102 6.2.1 Basic Concepts of Graph Theory .102 6.2.2 Structural Function of Network Systems..104 6.2.3 Reliability of Simple Network System .. 107 6.3 Minimal Path Algorithm 108 6.3.1Adjacent Matrix Algorithm .108 6.3.2 Depth First Search Algorithm ..110 6.3.3 Breadth First Search Algorithm 112 6.4 Disjoint Minimal Path Algorithm 112 6.4.1 Reliability Evaluation of Network System and Its Complexity .112 6.4.2 Disjoint Minimal Path Algorithm ..114 6.4.3 Reliability Analysis Based on DMP Algorithm .116 6.5 Recursive Decomposition Algorithm .117 6.5.1 Related Theorems 117 6.5.2 RDA for Edge-Weighted Network .118 6.5.3 RDA for Node-Weighted Network .122 6.6 Cut-Based Recursive Decomposition Algorithm127 6.6.1 Minimal Cut Searching Algorithm .127 6.6.2 Cut-Based Recursive Decomposition Algorithm .129 6.7 Reliability Analysis of Network with Dependent Failure133 6.8 Monte Carlo Simulation Method 135 References .136 7 Seismic Reliability Analysis of Engineering Network (II)—The Functional Reliability .137 7.1 Introduction .137 7.2 Functional Analysis of Water Supply Network 137 7.3 Functional Analysis of Water Supply Network with Leakage 140 7.3.1 Hydraulic equation of water supply network with leakage ..140 7.3.2 Analysis method .141 7.4 Seismic Functional Reliability Analysis of Water Supply Network 142 References..148 8 Aseismic Optimal Design ofLifeline Networks .149 8.1 Introduction ..149 8.2 Network Topology Optimization Based on Connectivity Reliability ..150 8.2.1 Topology Optimization Model .150 8.2.2 Genetic Algorithm ..150 8.2.3 Examples .154 8.3 Topology Optimization of Water Supply Network 155 8.3.1 Optimization Model .155 8.3.2 Algorithms for Seismic Topology Optimization.157 8.3.3 EXamples .158 References16l 9 Simulation and Control of Composite Lifeline System ..163 9.1 Introduction .. ..163 9.2 Disaster Response Simulation ofComposite Lifeline System ..165 9.2.1 Fundamentals of Discrete Event Dynamic Simulation..165 9.2.2 Simulation of Composite Lifeline Engineering System.167 9.2.3 Disaster Simulation Model of Composite Lifeline System ..168 9.2.4 Simulation Convergence Criteria and Simulation Statistics ..171 9.3 Petri Net Model for Disaster Simulation of Composite Lifeline System ..172 9.3.1 Classic Petri Net .172 9.3.2 Non-Autonomous Colored Petri Net.174 9.3.3 Seismic Disaster Simulation of Composite Lifeline System .175 9.4 Case Study on Seismic Disaster Simulation..177 9.5 Urban Earthquake Disaster Field Control182 9.5.1 System ControlBased on Structural Behavior 182 9.5.2 System Control Based on Investment Behavior ..184 9.5.3 Case Study .186 References.191 Appendix A: Boolean Algebra Basic...193 Appendix B: Seismic Reliability Analysis of Transformer Substation ..199 Appendix C: Seismic Secondary Fire Analysis .205 Bibliography 207