注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)計(jì)算機(jī)/網(wǎng)絡(luò)人工智能基于Java的深度學(xué)習(xí)

基于Java的深度學(xué)習(xí)

基于Java的深度學(xué)習(xí)

定 價(jià):¥59.00

作 者: [印] 拉胡爾.拉吉 著
出版社: 中國(guó)電力出版社
叢編項(xiàng):
標(biāo) 簽: 暫缺

ISBN: 9787519854294 出版時(shí)間: 2021-06-01 包裝: 平裝
開本: 16開 頁數(shù): 240 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  本書首先展示如何在系統(tǒng)上安裝和配置Java和DL4J,然后深入講解了深度學(xué)習(xí)基礎(chǔ)知識(shí),并創(chuàng)建了一個(gè)深度神經(jīng)網(wǎng)絡(luò)進(jìn)行二元分類。其次,本書介紹了如何在DL4J中構(gòu)建卷積神經(jīng)網(wǎng)絡(luò)(CNN),以及如何用文本構(gòu)建數(shù)字向量,還介紹了對(duì)非監(jiān)督數(shù)據(jù)的異常檢測(cè),以及如何有效地在分布式系統(tǒng)中建立神經(jīng)網(wǎng)絡(luò)。除此之外,講解了如何從Keras導(dǎo)入模型以及如何在預(yù)訓(xùn)練的DL4J模型中更改配置。最Z后,介紹了DL4J中的基準(zhǔn)測(cè)試并優(yōu)化神經(jīng)網(wǎng)絡(luò)以獲得最Z佳結(jié)果。 本書適合想要在Java中使用DL4J構(gòu)建健壯的深度學(xué)習(xí)應(yīng)用程序的讀者,閱讀本書需要具備深度學(xué)習(xí)基礎(chǔ)知識(shí)和一定的編程基礎(chǔ)。 Copyright©2019PacktPublishing.FirstpublishedintheEnglishlanguageunderthetitle ‘Java DeepLearningCookbook’. 本書簡(jiǎn)體中文版專有出版權(quán)由英國(guó)PacktPublishing公司授予中國(guó)電力出版社。未經(jīng)許可,不得以任何方式復(fù)制或傳播本書的任何部分。專有出版權(quán)受法律保護(hù)。

作者簡(jiǎn)介

  Rahul Raj在軟件開發(fā),業(yè)務(wù)分析,客戶溝通以及在多個(gè)領(lǐng)域的中/大型項(xiàng)目咨詢中擁有超過7年的IT行業(yè)經(jīng)驗(yàn)。目前,他在頂D級(jí)軟件開發(fā)公司擔(dān)任首席軟件工程師。在開發(fā)活動(dòng)方面擁有豐富的經(jīng)驗(yàn),包括需求分析,設(shè)計(jì),編碼,實(shí)現(xiàn),代碼審查,測(cè)試,用戶培訓(xùn)和增強(qiáng)。他撰寫了許多有關(guān)Java中神經(jīng)網(wǎng)絡(luò)的文章,并且在DL4J / Java官方頻道中也有介紹。他還是由印度最Z大的政府認(rèn)證機(jī)構(gòu)Vskills認(rèn)證的認(rèn)證機(jī)器學(xué)習(xí)專家。

圖書目錄

目錄
前言
第1章 Java深度學(xué)習(xí)簡(jiǎn)介 1
1.1 技術(shù)要求 1
1.2 初識(shí)深度學(xué)習(xí) 2
1.2.1 反向傳播 2
1.2.2 多層感知器 3
1.2.3 卷積神經(jīng)網(wǎng)絡(luò) 3
1.2.4 遞歸神經(jīng)網(wǎng)絡(luò) 3
1.2.5 為什么DL4J對(duì)深度學(xué)習(xí)很重要? 4
1.3 確定正確的網(wǎng)絡(luò)類型來解決深度學(xué)習(xí)問題 4
1.3.1 實(shí)現(xiàn)過程 4
1.3.2 工作原理 4
1.3.3 相關(guān)內(nèi)容 7
1.4 確定正確的激活函數(shù) 9
1.4.1 實(shí)現(xiàn)過程 9
1.4.2 工作原理 9
1.4.3 相關(guān)內(nèi)容 10
1.5 解決過度擬合問題 10
1.5.1 實(shí)現(xiàn)過程 11
1.5.2 工作原理 11
1.5.3 相關(guān)內(nèi)容 11
1.6 確定正確的批次大小和學(xué)習(xí)速率 12
1.6.1 實(shí)現(xiàn)過程 12
1.6.2 工作原理 12
1.6.3 相關(guān)內(nèi)容 13
1.7 為DL4J配置 Maven 14
1.7.1 準(zhǔn)備工作 14
1.7.2 實(shí)現(xiàn)過程 14
1.7.3 工作原理 15
1.8 為DL4J配置GPU加速環(huán)境 16
1.8.1 準(zhǔn)備工作 16
1.8.2 實(shí)現(xiàn)過程 16
1.8.3 工作原理 17
1.8.4 相關(guān)內(nèi)容 18
1.9 安裝問題疑難解答 18
1.9.1 準(zhǔn)備工作 19
1.9.2 實(shí)現(xiàn)過程 19
1.9.3 工作原理 19
1.9.4 相關(guān)內(nèi)容 20
第2章 數(shù)據(jù)提取、轉(zhuǎn)換和加載 23
2.1 技術(shù)要求 23
2.2 讀取并迭代數(shù)據(jù) 24
2.2.1 準(zhǔn)備工作 24
2.2.2 實(shí)現(xiàn)過程 24
2.2.3 工作原理 28
2.2.4 相關(guān)內(nèi)容 32
2.3 執(zhí)行模式轉(zhuǎn)換 33
2.3.1 實(shí)現(xiàn)過程 33
2.3.2 工作原理 34
2.3.3 相關(guān)內(nèi)容 34
2.4 構(gòu)建轉(zhuǎn)換過程 35
2.4.1 實(shí)現(xiàn)過程 35
2.4.2 工作原理 36
2.4.3 相關(guān)內(nèi)容 36
2.5 序列化轉(zhuǎn)換 37
2.5.1 實(shí)現(xiàn)過程 38
2.5.2 工作原理 38
2.6 執(zhí)行轉(zhuǎn)換過程 39
2.6.1 實(shí)現(xiàn)過程 39
2.6.2 工作原理 39
2.6.3 相關(guān)內(nèi)容 40
2.7 規(guī)范化數(shù)據(jù)以提高網(wǎng)絡(luò)效率 40
2.7.1 實(shí)現(xiàn)過程 40
2.7.2 工作原理 41
2.7.3 相關(guān)內(nèi)容 42
第3章 二元分類的深層神經(jīng)網(wǎng)絡(luò)構(gòu)建 43
3.1 技術(shù)要求 43
3.2 從CSV輸入中提取數(shù)據(jù) 44
3.2.1 實(shí)現(xiàn)過程 44
3.2.2 工作原理 44
3.3 從數(shù)據(jù)中刪除異常 45
3.3.1 實(shí)現(xiàn)過程 45
3.3.2 工作原理 46
3.3.3 相關(guān)內(nèi)容 48
3.4 將轉(zhuǎn)換應(yīng)用于數(shù)據(jù) 49
3.4.1 實(shí)現(xiàn)過程 49
3.4.2 工作原理 50
3.5 為神經(jīng)網(wǎng)絡(luò)模型設(shè)計(jì)輸入層 52
3.5.1 準(zhǔn)備工作 52
3.5.2 實(shí)現(xiàn)過程 53
3.5.3 工作原理 53
3.6 為神經(jīng)網(wǎng)絡(luò)模型設(shè)計(jì)隱藏層 54
3.6.1 實(shí)現(xiàn)過程 54
3.6.2 工作原理 54
3.7 為神經(jīng)網(wǎng)絡(luò)模型設(shè)計(jì)輸出層 54
3.7.1 實(shí)現(xiàn)過程 54
3.7.2 工作原理 55
3.8 訓(xùn)練和評(píng)估CSV數(shù)據(jù)的神經(jīng)網(wǎng)絡(luò)模型 55
3.8.1 實(shí)現(xiàn)過程 55
3.8.2 工作原理 57
3.8.3 相關(guān)內(nèi)容 62
3.9 部署神經(jīng)網(wǎng)絡(luò)模型并將其用作API 63
3.9.1 準(zhǔn)備工作 63
3.9.2 實(shí)現(xiàn)過程 64
3.9.3 工作原理 68
第4章 建立卷積神經(jīng)網(wǎng)絡(luò) 70
4.1 技術(shù)要求 70
4.2 從磁盤提取圖像 71
4.2.1 實(shí)現(xiàn)過程 71
4.2.2 工作原理 72
4.3 為訓(xùn)練數(shù)據(jù)創(chuàng)建圖像變體 73
4.3.1 實(shí)現(xiàn)過程 73
4.3.2 工作原理 73
4.3.3 相關(guān)內(nèi)容 75
4.4 圖像預(yù)處理和輸入層設(shè)計(jì) 75
4.4.1 實(shí)現(xiàn)過程 75
4.4.2 工作原理 76
4.5 為CNN構(gòu)造隱藏層 77
4.5.1 實(shí)現(xiàn)過程 77
4.5.2 工作原理 78
4.6 構(gòu)建輸出層以進(jìn)行輸出分類 78
4.6.1 實(shí)現(xiàn)過程 78
4.6.2 工作原理 78
4.7 訓(xùn)練圖像并評(píng)估CNN輸出 79
4.7.1 實(shí)現(xiàn)過程 79
4.7.2 工作原理 81
4.7.3 相關(guān)內(nèi)容 81
4.8 為圖像分類器創(chuàng)建API端點(diǎn) 82
4.8.1 實(shí)現(xiàn)過程 82
4.8.2 工作原理 87
第5章 實(shí)現(xiàn)自然語言處理 88
5.1 技術(shù)要求 89
5.2 數(shù)據(jù)要求 89
5.3 讀取和加載文本數(shù)據(jù) 90
5.3.1 準(zhǔn)備工作 90
5.3.2 實(shí)現(xiàn)過程 90
5.3.3 工作原理 92
5.3.4 相關(guān)內(nèi)容 92
5.3.5 參考資料 92
5.4 分析詞數(shù)據(jù)并訓(xùn)練模型 93
5.4.1 實(shí)現(xiàn)過程 93
5.4.2 工作原理 93
5.4.3 相關(guān)內(nèi)容 94
5.5 評(píng)估模型 95
5.5.1 實(shí)現(xiàn)過程 95
5.5.2 工作原理 95
5.5.3 相關(guān)內(nèi)容 96
5.6 從模型中生成圖譜 96
5.6.1 準(zhǔn)備工作 96
5.6.2 實(shí)現(xiàn)過程 96
5.6.3 工作原理 97
5.7 保存和重新加載模型 98
5.7.1 實(shí)現(xiàn)過程 99
5.7.2 工作原理 99
5.8 導(dǎo)入GoogleNews向量 99
5.8.1 實(shí)現(xiàn)過程 99
5.8.2 工作原理 100
5.8.3 相關(guān)內(nèi)容 100
5.9 Word2Vec模型的故障診斷和調(diào)整 101
5.9.1 實(shí)現(xiàn)過程 101
5.9.2 工作原理 102
5.9.3 參考資料 103
5.10 使用CNNs使用 Word2Vec進(jìn)行句子分類 103
5.10.1 準(zhǔn)備工作 104
5.10.2 實(shí)現(xiàn)過程 105
5.10.3 工作原理 107
5.10.4 相關(guān)內(nèi)容 107
5.11 使用Doc2Vec進(jìn)行文檔分類 109
5.11.1 實(shí)現(xiàn)過程 109
5.11.2 工作原理 111
第6章 構(gòu)建時(shí)間序列的LSTM神經(jīng)網(wǎng)絡(luò) 114
6.1 技術(shù)要求 114
6.2 提取和讀取臨床數(shù)據(jù) 115
6.2.1 實(shí)現(xiàn)過程 115
6.2.2 工作原理 116
6.3 加載和轉(zhuǎn)換數(shù)據(jù) 117
6.3.1 準(zhǔn)備工作 117
6.3.2 實(shí)現(xiàn)過程 118
6.3.3 工作原理 118
6.4 構(gòu)建網(wǎng)絡(luò)輸入層 119
6.4.1 實(shí)現(xiàn)過程 119
6.4.2 工作原理 120
6.5 構(gòu)建網(wǎng)絡(luò)輸出層 121
6.5.1 實(shí)現(xiàn)過程 121
6.5.2 工作原理 121
6.6 訓(xùn)練時(shí)間序列數(shù)據(jù) 122
6.6.1 實(shí)現(xiàn)過程 122
6.6.2 工作原理 123
6.7 評(píng)估LSTM網(wǎng)絡(luò)的效率 123
6.7.1 實(shí)現(xiàn)過程 123
6.7.2 工作原理 124
第7章 構(gòu)建LSTM神經(jīng)網(wǎng)絡(luò)序列分類 125
7.1 技術(shù)要求 125
7.2 提取時(shí)間序列數(shù)據(jù) 127
7.2.1 實(shí)現(xiàn)過程 127
7.2.2 工作原理 128
7.3 加載訓(xùn)練數(shù)據(jù) 129
7.3.1 實(shí)現(xiàn)過程 130
7.3.2 工作原理 131
7.4 規(guī)范化訓(xùn)練數(shù)據(jù) 132
7.4.1 實(shí)現(xiàn)過程 132
7.4.2 工作原理 132
7.5 為網(wǎng)絡(luò)構(gòu)建輸入層 133
7.5.1 實(shí)現(xiàn)過程 133
7.5.2 工作原理 134
7.6 為網(wǎng)絡(luò)構(gòu)建輸出層 134
7.6.1 實(shí)現(xiàn)過程 134
7.6.2 工作原理 135
7.7 LSTM網(wǎng)絡(luò)分類輸出的評(píng)估 135
7.7.1 實(shí)現(xiàn)過程 135
7.7.2 工作原理 136
第8章 對(duì)非監(jiān)督數(shù)據(jù)執(zhí)行異常檢測(cè) 139
8.1 技術(shù)要求 139
8.2 提取和準(zhǔn)備 MNIST數(shù)據(jù) 140
8.2.1 實(shí)現(xiàn)過程 140
8.2.2 工作原理 141
8.3 為輸入構(gòu)造密集層 142
8.3.1 實(shí)現(xiàn)過程 142
8.3.2 工作原理 142
8.4 構(gòu)造輸出層 143
8.4.1 實(shí)現(xiàn)過程 143
8.4.2 工作原理 143
8.5 MNIST圖像訓(xùn)練 144
8.5.1 實(shí)現(xiàn)過程 144
8.5.2 工作原理 144
8.6 根據(jù)異常得分評(píng)估和排序結(jié)果 145
8.6.1 實(shí)現(xiàn)過程 145
8.6.2 工作原理 146
8.7 保存結(jié)果模型 148
8.7.1 實(shí)現(xiàn)過程 148
8.7.2 工作原理 148
8.7.3 相關(guān)內(nèi)容 148
第9章 使用RL4J進(jìn)行強(qiáng)化學(xué)習(xí) 149
9.1 技術(shù)要求 149
9.2 設(shè)置 Malmo環(huán)境和各自的依賴項(xiàng) 152
9.2.1 準(zhǔn)備工作 152
9.2.2 實(shí)現(xiàn)過程 152
9.2.3 工作原理 153
9.3 設(shè)置數(shù)據(jù)要求 153
9.3.1 實(shí)現(xiàn)過程 153
9.3.2 工作原理 157
9.3.3 參考資料 158
9.4 配置和訓(xùn)練DQN智能體 158
9.4.1 準(zhǔn)備工作 158
9.4.2 實(shí)現(xiàn)過程 158
9.4.3 工作原理 160
9.4.4 相關(guān)內(nèi)容 162
9.5 評(píng)估 Malmo智能體 162
9.5.1 準(zhǔn)備工作 162
9.5.2 實(shí)現(xiàn)過程 163
9.5.3 工作原理 163
第10章 在分布式環(huán)境中開發(fā)應(yīng)用程序 165
10.1 技術(shù)要求 165
10.2 設(shè)置DL4J和所需的依賴項(xiàng) 166
10.2.1 準(zhǔn)備工作 166
10.2.2 實(shí)現(xiàn)過程 167
10.2.3 工作原理 173
10.3 創(chuàng)建用于訓(xùn)練的uber-JAR 174
10.3.1 實(shí)現(xiàn)過程 174
10.3.2 工作原理 175
10.4 訓(xùn)練用的CPU/GPU特定配置 176
10.4.1 實(shí)現(xiàn)過程 176
10.4.2 工作原理 176
10.4.3 更多內(nèi)容 177
10.5 Spark的內(nèi)存設(shè)置和垃圾回收 177
10.5.1 實(shí)現(xiàn)過程 177
10.5.2 工作原理 178
10.5.3 更多內(nèi)容 179
10.6 配置編碼閾值 181
10.6.1 實(shí)現(xiàn)過程 181
10.6.2 工作原理 181
10.6.3 更多內(nèi)容 182
10.7 執(zhí)行分布式測(cè)試集評(píng)估 182
10.7.1 實(shí)現(xiàn)過程 182
10.7.2 工作原理 186
10.8 保存和加載訓(xùn)練過的神經(jīng)網(wǎng)絡(luò)模型 187
10.8.1 實(shí)現(xiàn)過程 187
10.8.2 工作原理 188
10.8.3 更多內(nèi)容 188
10.9 執(zhí)行分布式推理 188
10.9.1 實(shí)現(xiàn)過程 188
10.9.2 工作原理 189
第11章 遷移學(xué)習(xí)在網(wǎng)絡(luò)模型中的應(yīng)用 190
11.1 技術(shù)要求 190
11.2 修改當(dāng)前的客戶保留模型 190
11.2.1 實(shí)現(xiàn)過程 191
11.2.2 工作原理 192
11.2.3 更多內(nèi)容 195
11.3 微調(diào)學(xué)習(xí)配置 196
11.3.1 實(shí)現(xiàn)過程 196
11.3.2 工作原理 197
11.4 凍結(jié)層的實(shí)現(xiàn) 197
11.4.1 實(shí)現(xiàn)過程 198
11.4.2 工作原理 198
11.5 導(dǎo)入和加載Keras模型和層 198
11.5.1 準(zhǔn)備工作 198
11.5.2 實(shí)現(xiàn)過程 199
11.5.3 工作原理 199
第12章 基準(zhǔn)測(cè)試和神經(jīng)網(wǎng)絡(luò)優(yōu)化 201
12.1 技術(shù)要求 201
12.2 DL4J/ND4J特定的配置 203
12.2.1 準(zhǔn)備工作 230 '203
12.2.2 實(shí)現(xiàn)過程 203
12.2.3 工作原理 204
12.2.4 更多內(nèi)容 206
12.3 設(shè)置堆空間和垃圾回收 207
12.3.1 實(shí)現(xiàn)過程 207
12.3.2 工作原理 209
12.3.3 更多內(nèi)容 210
12.3.4 其他參閱 210
12.4 使用異步ETL 210
12.4.1 實(shí)現(xiàn)過程 210
12.4.2 工作原理 211
12.4.3 更多內(nèi)容 211
12.5 利用仲裁器監(jiān)測(cè)神經(jīng)網(wǎng)絡(luò)行為 212
12.5.1 實(shí)現(xiàn)過程 212
12.5.2 工作原理 213
12.6 執(zhí)行超參數(shù)調(diào)整 213
12.6.1 實(shí)現(xiàn)過程 214
12.6.2 工作原理 217

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)