王夢蛟,國家橡膠與輪胎工程技術(shù)研究中心任首席科學(xué)家,怡維怡橡膠研究院院長。美國卡博特公司前首席科學(xué)家。1984年,于法國國家科學(xué)研究中心(CNRS)獲得博士學(xué)位。曽任職于原化工部北京橡膠工業(yè)研究設(shè)計(jì)院、美國阿克隆大學(xué)、德國橡膠工業(yè)研究院(DIK)、德國Degussa公司。王夢蛟在橡膠行業(yè)耕耘至今已達(dá)56年。發(fā)表科學(xué)論文共140余篇,獲得55個(gè)美國和中國的授權(quán)專利及其相應(yīng)的24個(gè)PCT專利。曾參與了《Carbon Black:Science and Technology》等10本專業(yè)書的章節(jié)編寫,主譯了5本橡膠專業(yè)書籍。曾擔(dān)任美國Rubber Chemistry and Technology雜志編委。Michael Morris現(xiàn)任美國卡博特公司高級科學(xué)家。1985年于南安普頓大學(xué)獲博士學(xué)位。先后任職于英國馬來西亞橡膠生產(chǎn)者研究協(xié)會(MRPRA)、馬來西亞橡膠研究院。1996年加入卡博特公司后,主要從事氣相法白炭黑、炭黑在橡膠中的補(bǔ)強(qiáng)研究。Morris博士已發(fā)表18篇論文,參與兩本書的編寫,獲得12個(gè)美國授權(quán)專利和很多對應(yīng)的PCT專利。
圖書目錄
Preface Ⅰ About the Authors Ⅲ 1. Manufacture of Fillers 1 1.1 Manufacture of Carbon Black 3 1.1.1 Mechanisms of Carbon Black Formation 3 1.1.2 Manufacturing Process of Carbon Black 6 1.1.2.1 Oil-Furnace Process 6 1.1.2.2 The Thermal Black Process 10 1.1.2.3 Acetylene Black Process 11 1.1.2.4 Lampblack Process 11 1.1.2.5 Impingement (Channel, Roller) Black Process 12 1.1.2.6 Recycle Blacks 12 1.1.2.7 Surface Modification of Carbon Blacks 13 1.1.2.7.1 Attachments of the Aromatic Ring Nucleus to Carbon Black 13 1.1.2.7.2 Attachments to the Aromatic Ring Structure through Oxidized Groups 13 1.1.2.7.3 Metal Oxide Treatment 14 1.2 Manufacture of Silica 14 1.2.1 Mechanisms of Precipitated Silica Formation 15 1.2.2 Manufacturing Process of Precipitated Silica 16 1.2.3 Mechanisms of Fumed Silica Formation 18 1.2.4 Manufacture Process of Fumed Silica 18 References 19 2. Characterization of Fillers 22 2.1 Chemical Composition 23 2.1.1 Carbon Black 23 2.1.2 Silica 25 2.2 Micro-Structure of Fillers 27 2.2.1 Carbon Black 27 2.2.2 Silica 29 2.3 Filler Morphologies 29 2.3.1 Primary Particles-Surface Area 29 2.3.1.1 Transmission Electron Microscope (TEM) 30 2.3.1.2 Gas Phase Adsorptions 34 2.3.1.2.1 Total Surface Area Measured by Nitrogen Adsorption-BET/NSA 35 2.3.1.2.2 External Surface Area Measured by Nitrogen Adsorption-STSA 41 2.3.1.2.3 Micro-Pore Size Distribution Measured by Nitrogen Adsorption 46 2.3.1.3 Liquid Phase Adsorptions 51 2.3.1.3.1 Iodine Adsorptions 52 2.3.1.3.2 Adsorption of Large Molecules 56 2.3.2 Structure-Aggregate Size and Shape 61 2.3.2.1 Transmission Electron Microscopy 62 2.3.2.2 Disc Centrifuge Photosedimentometer 66 2.3.2.3 Void Volume Measurement 68 2.3.2.3.1 Oil Absorption 69 2.3.2.3.2 Compressed Volume 75 2.3.2.3.3 Mercury Porosimetry 80 2.3.3 Tinting Strength 83 2.4 Filler Surface Characteristics 92 2.4.1 Characterization of Surface Chemistry of Filler-Surface Groups 92 2.4.2 Characterization of Physical Chemistry of Filler Surface-Surface Energy 93 2.4.2.1 Contact Angle 98 2.4.2.1.1 Single Liquid Phase 98 2.4.2.1.2 Dual Liquid Phases 102 2.4.2.2 Heat of Immersion 106 2.4.2.3 Inverse Gas Chromatograph 111 2.4.2.3.1 Principle of Measuring Filler Surface Energy with IGC 111 2.4.2.3.2 Adsorption at Infinite Dilution 112 2.4.2.3.3 Adsorption at Finite Concentration 118 2.4.2.3.4 Surface Energy of the Fillers 123 2.4.2.3.5 Estimation of Rubber-Filler Interaction from Adsorption Energy of Elastomer Analogs 139 2.4.2.4 Bound Rubber Measurement 142 References 143 3. Effect of Fillers in Rubber 153 3.1 Hydrodynamic Effect ? Strain Amplification 153 3.2 Interfacial Interaction between Filler and Polymer 155 3.2.1 Bound Rubber 155 3.2.2 Rubber Shell 159 3.3 Occlusion of Rubber 161 3.4 Filler Agglomeration 163 3.4.1 Observations of Filler Agglomeration 163 3.4.2 Modes of Filler Agglomeration 164 3.4.3 Thermodynamics of Filler Agglomeration 167 3.4.4 Kinetics of Filler Agglomeration 170 References 173 4. Filler Dispersion 177 4.1 Basic Concept of Filler Dispersion 177 4.2 Parameters Influencing Filler Dispersion 179 4.3 Liquid Phase Mixing 187 References 191 5. Effect of Fillers on the Properties of Uncured Compounds 193 5.1 Bound Rubber 193 5.1.1 Significance of Bound Rubber 194 5.1.2 Measurement of Bound Rubber 195 5.1.3 Nature of Bound Rubber Attachment 197 5.1.4 Polymer Mobility in Bound Rubber 202 5.1.5 Polymer Effects on Bound Rubber 203 5.1.5.1 Molecular Weight Effects 203 5.1.5.2 Polymer Chemistry Effects 203 5.1.6 Effect of Filler on Bound Rubber 204 5.1.6.1 Surface Area and Structure 204 5.1.6.2 Specific Surface Activity of Carbon Blacks 206 5.1.6.3 Effect of Surface Characteristics on Bound Rubber 210 5.1.6.4 Carbon Black Surface Modification 211 5.1.6.5 Silica Surface Modification 215 5.1.7 Effect of Mixing Conditions on Bound Rubber 215 5.1.7.1 Temperature and Time of Mixing 216 5.1.7.2 Mixing Sequence Effect of Rubber Ingredients 218 5.1.7.2.1 Mixing Sequence of Oil and Other Additives 219 5.1.7.2.2 Mixing Sequence of Sulfur, Sulfur Donor, and Other Crosslinkers 221 5.1.7.2.3 Bound Rubber of Silica Compounds 222 5.1.7.3 Bound Rubber in Wet Masterbatches 223 5.1.7.4 Bound Rubber of Fumed Silica-Filled Silicone Rubber 225 5.2 Viscosity of Filled Compounds 227 5.2.1 Factors Influencing Viscosity of the Carbon Black-Filled Compounds 227 5.2.2 Master Curve of Viscosity vs. Effective Volume of Carbon Blacks 230 5.2.3 Viscosity of Silica Compounds 233 5.2.4 Viscosity Growth ? Storage Hardening 238 5.3 Die Swell and Surface Appearance of the Extrudate 241 5.3.1 Die Swell of Carbon Black Compounds 241 5.3.2 Die Swell of Silica Compounds 246 5.3.3 Extrudate Appearance 247 5.4 Green Strength 249 5.4.1 Effect of Polymers 249 5.4.2 Effect of Filler Properties 252 References 255 6. Effect of Fillers on the Properties of Vulcanizates 263 6.1 Swelling 263 6.2 Stress-Strain Behavior 271 6.2.1 Low Strain 271 6.2.2 Hardness 274 6.2.3 Medium and High Strains-The Strain Dependence of Modulus 275 6.3 Strain-Energy Loss-Stress-Softening Effect 279 6.3.1 Mechanisms of Stress-Softening Effect 282 6.3.1.1 Gum 282 6.3.1.2 Filled Vulcanizates 283 6.3.1.3 Recovery of Stress Softening 287 6.3.2 Effect of Fillers on Stress Softening 288 6.3.2.1 Carbon Blacks 288 6.3.2.1.1 Effect of Loading 288 6.3.2.1.2 Effect of Surface Area 289 6.3.2.1.3 Effect of Structure 290 6.3.2.2 Precipitated Silica 290 6.4 Fracture Properties 295 6.4.1 Crack Initiation 295 6.4.2 Tearing 296 6.4.2.1 State of Tearing 296 6.4.2.1.1 Effect of Filler 301 6.4.2.1.2 Effect of Polymer Crystallizability and Network Structure 302 6.4.2.2 Tearing Energy 306 6.4.2.2.1 Effect of Filler 306 6.4.2.2.2 Effect of Polymer Crystallizability and Network Structure 307 6.4.3 Tensile Strength and Elongation at Break 315 6.4.4 Fatigue 318 References 321 7. Effect of Fillers on the Dynamic Properties of Vulcanizates 329 7.1 Dynamic Properties of Vulcanizates 329 7.2 Dynamic Properties of Filled Vulcanizates 332 7.2.1 Strain Amplitude Dependence of Elastic Modulus of Filled Rubber 332 7.2.2 Strain Amplitude Dependence of Viscous Modulus of Filled Rubber 340 7.2.3 Strain Amplitude Dependence of Loss Tangent of Filled Rubber 343 7.2.4 Hysteresis Mechanisms of Filled Rubber Concerning Different Modes of Filler Agglomeration 348 7.2.5 Temperature Dependence of Dynamic Properties of Filled Vulcanizates 350 7.3 Dynamic Stress Softening Effect 354 7.3.1 Stress-Softening Effect of Filled Rubbers Measured with Mode 2 355 7.3.2 Effect of Temperature on Dynamic Stress-Softening 359 7.3.3 Effect of Frequency on Dynamic Stress-Softening 360 7.3.4 Stress-Softening Effect of Filled Rubbers Measured with Mode 3 362 7.3.5 Effect of Filler Characteristics on Dynamic Stress-Softening and Hysteresis 369 7.3.6 Dynamic Stress-Softening of Silica Compounds Produced by Liquid Phase Mixing 371 7.4 Time-Temperature Superposition of Dynamic Properties of Filled Vulcanizates 376 7.5 Heat Build-up 385 7.6 Resilience 387 References 389 8. Rubber Reinforcement Related to Tire Performance 394 8.1 Rolling Resistance 394 8.1.1 Mechanisms of Rolling Resistance-Relationship between Rolling Resistance and Hysteresis 394 8.1.2 Effect of Filler on Temperature Dependence of Dynamic Properties 396 8.1.2.1 Effect of Filler Loading 396 8.1.2.2 Effect of Filler Morphology 397 8.1.2.2.1 Effect of Surface Area 397 8.1.2.2.2 Effect of Structure 400 8.1.2.3 Effect of Filler Surface Characteristics 402 8.1.2.3.1 Effect of Carbon Black Graphitization on Dynamic Properties 403 8.1.2.3.2 Comparison of Carbon Black and Silica 405 8.1.2.3.3 Effect of Filler Blends (Blend of Silica and Carbon Black, without Coupling Agent) 408 8.1.2.3.4 Effect of Surface Modification of Silica 411 8.1.2.3.5 Effect of Surface Modification of Carbon Black on Dynamic Properties 414 8.1.2.3.6 Carbon/Silica Dual Phase Filler 418 8.1.2.3.7 Polymeric Filler 423 8.1.3 Mixing Effect 425 8.1.4 Precrosslinking Effect 428 8.2 Skid Resistance ? Friction 430 8.2.1 Mechanisms of Skid Resistance 434 8.2.1.1 Friction and Friction Coefficients-Static Friction and Dynamic Friction 434 8.2.1.2 Friction between Two Rigid Solid Surfaces 434 8.2.2 Friction of Rubber on Rigid Surface 435 8.2.2.1 Dry Friction 435 8.2.2.1.1 Adhesion Friction 435 8.2.2.1.2 Hysteresis Friction 437 8.2.2.2 Wet Friction 438 8.2.2.2.1 Elastohydrodynamic Lubrication 439 8.2.2.2.2 The Thickness of Lubricant Film for Rubber Sliding over Rigid Asperity 439 8.2.2.2.3 Boundary Lubrication 439 8.2.2.2.4 Difference in Boundary Lubrication between Rigid-Rigid and Rigid-Elastomer Surfaces 440 8.2.2.3 Review of Frictional Properties of Some Tire Tread Materials 442 8.2.2.3.1 Carbon and Graphite 442 8.2.2.3.2 Glass 443 8.2.2.3.3 Rubber 443 8.2.2.3.4 Prediction of Friction of Filled Rubbers on Dry and Wet Road Surfaces Based on Surface Characteristics of Different Materials 444 8.2.2.4 Morphology of the Worn Surface of Filled Vulcanizates 444 8.2.2.4.1 Comparison of Polymer-Filler Interaction between Carbon Black and Silica 445 8.2.2.4.2 Effect of Break-in of Specimens under Wet Conditions on Friction Coefficients 448 8.2.2.4.3 Abrasion Resistance of Filled Vulcanizates under Wet and Dry Conditions 449 8.2.2.4.4 Observation of the Change in Friction Coefficients during Skid Test 450 8.2.2.4.5 SEM Observation of Worn Surface 451 8.2.3 Wet Skid Resistance of Tire 451 8.2.3.1 Three Zone Concept 452 8.2.3.2 Effect of Different Fillers in the Three Zones 454 8.2.3.2.1 Minimization of Squeeze-Film Zone 454 8.2.3.2.2 Minimization of Transition Zone and Maximizing Its Boundary Lubrication Component 454 8.2.3.2.3 Maximization of Traction Zone 456 8.2.3.3 Influencing Factors on Wet Skid Resistance 456 8.2.3.3.1 Effect of Test Conditions on Wet Skid Resistance 458 8.2.3.3.2 Effect of Compound Properties and Test Methods on Wet Skid Resistance 464 8.2.3.4 Development of a New Filler for Wet Skid Resistance 467 8.3 Abrasion Resistance 471 8.3.1 Abrasion Mechanisms 471 8.3.2 Effect of Filler Parameters on Abrasion 480 8.3.2.1 Effect of Filler Loading 480 8.3.2.2 Effect of Filler Surface Area 482 8.3.2.3 Effect of Filler Structure 483 8.3.2.4 Effect of Filler-Elastomer Interaction 485 8.3.2.4.1 Effect of Filler-Elastomer Interaction Related to Surface Area 485 8.3.2.4.2 Effect of Heat Treatment of Carbon Black 486 8.3.2.4.3 Effect of Oxidation of Carbon Black 487 8.3.2.4.4 Effect of Physical Adsorption of Chemicals on Carbon Black Surface 487 8.3.2.5 Effect of Carbon Black Mixing Procedure 488 8.3.2.6 Silica vs. Carbon Black 490 8.3.2.7 Silica in Emulsion SBR Compounds 491 8.3.2.8 Silica in NR Compounds 492 8.3.2.9 Effect of CSDPF on Abrasion Resistance 494 References 495 9. Development of New Materials for Tire Application 508 9.1 Chemical Modified Carbon Black 508 9.2 Carbon-Silica Dual Phase Filler (CSDPF) 510 9.2.1 Characteristics of Chemistry 512 9.2.2 Characteristics of Compounding 513 9.2.3 Application of CSDPF 4000 in Passenger Tires 515 9.2.4 Application of CSDPF 2000 in Truck Tires 515 9.3 NR/Carbon Black Masterbatch Produced by Liquid Phase Mixing 516 9.3.1 Mechanisms of Mixing, Coagulation, and Dewatering 517 9.3.2 Compounding Characteristics 518 9.3.2.1 Mastication Efficiency 519 9.3.2.2 CEC Product Form 520 9.3.2.3 Mixing Equipment 520 9.3.2.4 Mixing Procedures 521 9.3.2.4.1 Two-Stage Mixing 521 9.3.2.4.2 Single-Stage Mixing 522 9.3.2.5 Total Mixing Cycle 523 9.3.3 Cure Characteristics 524 9.3.4 Physical Properties of CEC Vulcanizates 524 9.3.4.1 Stress-Strain Properties 524 9.3.4.2 Abrasion Resistance 525 9.3.4.3 Dynamic Hysteresis at High Temperature 526 9.3.4.4 Cut-Chip Resistance 529 9.3.4.5 Flex Fatigue 529 9.4 Synthetic Rubber/Silica Masterbatch Produced with Liquid Phase Mixing 530 9.4.1 Production Process of EVEC 531 9.4.2 Compound Properties 532 9.4.2.1 Bound Rubber Content 533 9.4.2.2 Mooney Viscosity 534 9.4.2.3 Extrusion 534 9.4.2.4 Cure Characteristics 535 9.4.3 Vulcanizate Properties 537 9.4.3.1 Hardness of Vulcanizates 537 9.4.3.2 Static Stress-Strain Properties 537 9.4.3.3 Tensile Strength and Elongation at Break 540 9.4.3.4 Tear Strength 540 9.4.3.5 Dynamic Properties 541 9.4.3.5.1 Strain Dependence of Dynamic Properties 541 9.4.3.5.2 Temperature Dependence of Dynamic Properties 544 9.4.3.5.3 Rebound and Heat Build-up 548 9.4.3.6 Abrasion Resistance 548 9.5 Powdered Rubber 549 9.5.1 Production of Powdered Rubber 549 9.5.2 Mixing of Powdered Rubber 549 9.5.3 Properties of Powdered Rubber Compounds 550 9.6 Masterbatches with Other Fillers 551 9.6.1 Starch 551 9.6.2 Organo-Clays 553 References 553 10. Reinforcement of Silicone Rubber 558 10.1 Fumed vs. Precipitated Silica 559 10.2 Interaction between Silica and Silicone Polymers 560 10.2.1 Surface Energy Characterization by Inverse Gas Chromatography 560 10.2.2 Bound Rubber in Silica-PDMS Systems 562 10.3 Crepe Hardening 563 10.4 Silica Surface Modification 564 10.5 Morphological Properties of Silica 565 10.5.1 Surface Area 565 10.5.2 Structure Properties of Silica 567 10.6 Mixing and Processing of Silicone Compounds 568 10.7 Silica Dispersion in Silicone Rubber 572 10.8 Static Mechanical Properties 573 10.8.1 Tensile Modulus 573 10.8.2 Tensile Strength and Elongation Properties 576 10.8.3 Compression Set 576 10.9 Dynamic Mechanical Properties 578 References 580 Index 583