注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)Hilbert第五問(wèn)題及相關(guān)論題(影印版)

Hilbert第五問(wèn)題及相關(guān)論題(影印版)

Hilbert第五問(wèn)題及相關(guān)論題(影印版)

定 價(jià):¥169.00

作 者: Terence Tao 著
出版社: 高等教育出版社
叢編項(xiàng):
標(biāo) 簽: 暫缺

ISBN: 9787040556292 出版時(shí)間: 2021-03-01 包裝: 精裝
開本: 16開 頁(yè)數(shù): 360 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  Hilbert著名的23個(gè)問(wèn)題的第5個(gè)問(wèn)題為:是否每個(gè)局部Euclid拓?fù)淙簩?shí)際上都是Lie群。通過(guò)Gleason、Montgomery-Zippin、 Yamabe等人的工作,這個(gè)問(wèn)題得到了肯定的回答;更一般地,他們建立了局部緊群令人滿意的(介觀)結(jié)構(gòu)理論。隨后,這種結(jié)構(gòu)理論被用來(lái)證明Gromov關(guān)于多項(xiàng)式增長(zhǎng)群的定理,也用在最近Hrushovski、Breuillard、Green和作者關(guān)于近似群結(jié)構(gòu)的工作中。 本書所有材料以統(tǒng)一的方式呈現(xiàn),從實(shí)Lie群和Lie代數(shù)的分析結(jié)構(gòu)理論(強(qiáng)調(diào)單參數(shù)群的作用和Baker-Campbell-Hausdorff公式)開始,然后給出局部緊群的Gleason-Yamabe結(jié)構(gòu)定理的證明(強(qiáng)調(diào)Gleason度量的作用),由此得到Hilbert第五問(wèn)題的解答。在回顧了一些模型論基礎(chǔ)知識(shí)(特別是超積理論)之后,作者給出了Gleason-Yamabe定理在多項(xiàng)式增長(zhǎng)群和近似群中的組合應(yīng)用。本書還提供了大量相關(guān)練習(xí)和其他補(bǔ)充材料供讀者參考。

作者簡(jiǎn)介

暫缺《Hilbert第五問(wèn)題及相關(guān)論題(影印版)》作者簡(jiǎn)介

圖書目錄

Preface
Notation
Acknowledgments
Part 1. Hilbert's Fifth Problem
Chapter 1. Introduction
§1.1. Hilbert's fifth problem
§1.2. Approximate groups
§1.3. Gromov's theorem
Chapter 2. Lie groups, Lie algebras, and the Baker-Campbell-Hausdorff formula
§2.1. Local groups
§2.2. Some differential geometry
§2.3. The Lie algebra of a Lie group
§2.4. The exponential map
§2.5. The Baker-Campbell-Hausdorff formula
Chapter 3. Building Lie structure from representations and metrics
§3.1. The theorems of Cartan and von Neumann
§3.2. Locally compact vector spaces
§3.3. From Gleason metrics to Lie groups
Chapter 4. Haar measure, the Peter-Weyl theorem. and compact or abelian groups
§4.1. Haar measure
§4.2. The Peter-Weyl theorem
§4.3. The structure of locally compact abelian groups
Chapter 5. Building metrics on groups, and the Gleason-Yamabe theorem
§5.1. Warmup: the Birkhoff-Kakutani theorem
§5.2. Obtaining the commutator estimate via convolution
§5.3. Building metrics on NSS groups
§5.4. NSS from subgroup trapping
§5.5. The subgroup trapping property
§5.6. The local group case
Chapter 6.The structure of locally compact groups
§6.1. Van Dantzig's theorem
§6.2. The invariance of domain theorem
§6.3. Hilbert's fifth problem
§6.4. Transitive actions
Chapter 7. Ultraproducts as a bridge between hard analysis and soft analysis
§7.1. Ultrafilters
§7.2. Ultrapowers and ultralimits
§7.3. Nonstandard finite sets and nonstandard finite sums
§7.4. Asymptotic notation
§7.5. Ultra approximate groups
……
Part 2. Related Articles
Bibliography
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)