The authors of this book are composed of two persons who have been working on carbon materials, published many research papers and recently published three books on carbon materials on their fundamentals, advances and characterizations (M. Inagaki and F. Kang) and two persons who have been working on graphene from the standpoints of physics (K. Takai), and biochemical applications (S. Tsujimura).The book is going to be written under the corporation of four authors by sharing the responsibilities on whole
圖書目錄
Contents Preface // .v Acknowledgments // .vii Chapter 1: Introduction // ..1 1.1 What is graphene? // .. 1 1.2 Fundamentals of materials science for carbon materials // . 5 1.2.1 Classi.cation of carbon materials // 5 1.2.2 Structure and nanotexture of carbon materials // .6 1.2.3 Carbonization and graphitization // . 8 1.2.4 Carbon materials // . 12 1.3 Construction and purposes of the current book // ..29 References // . 31 Chapter 2: Preparation of graphene // 39 2.1 Chemical vapor deposition // . 41 2.1.1 Synthesis of graphene .lms // .. 41 2.1.2 Synthesis of graphene .akes // 60 2.1.3 Synthesis of single-walled carbon nanohorns // .65 2.1.4 Substitutional doping of heteroatoms // .. 69 2.1.5 Graphene foams // .. 80 2.2 Cleavage (peeling) // .. 81 2.2.1 Mechanical cleavage // .81 2.2.2 Cleavage in solution // . 85 2.2.3 Cleavage via intercalation compounds // 95 2.3 Exfoliation via graphene oxide // .. 101 2.3.1 Synthesis of graphene oxide // ..102 2.3.2 Exfoliation of graphene oxide // .. 105 2.3.3 Reduction of graphene oxide // . 107 2.3.4 Fabrication of reduced graphene oxide foams (sponges) // ..123 2.3.5 Functionalization of reduced graphene oxide // ..127 2.3.6 Substitutional doping of heteroatoms // 133 2.3.7 Fabrication of transparent reduced graphene oxide .lms // . 135 2.4 Other processes // .. 138 2.4.1 Chemical synthesis // .. 138 2.4.2 Synthesis via pyrolysis // . 143 2.4.3 Unzipping of carbon nanotubes // 147 2.5 Concluding remarks // . 150 References // .. 153 Chapter 3: Electrical properties and applications // . 173 3.1 Fundamental electrical properties // . 174 3.1.1 Electronic structure of graphene // . 174 3.1.2 Effects of defects and edges // ..181 3.2 Applications to information technology // 189 3.2.1 Transistor devices // . 189 3.2.2 Spintronics devices // . 207 3.2.3 Transparent electrode // .221 3.3 Applications to social .elds // 226 3.3.1 Sensor devices // 226 3.3.2 Photon detectors // 233 3.3.3 Resistance standard // .237 3.3.4 Electron .eld emission // . 242 3.4 Concluding remarks // . 244 References // .. 244 Chapter 4: Chemical properties and applications // .. 251 4.1 Fundamental chemical properties // .252 4.1.1 Hydrogenation // 253 4.1.2 Oxygenation // 256 4.1.3 Layer modi.cation // ..258 4.2 Applications to energy storage and conversion // 259 4.2.1 Lithium-ion batteries // .. 259 4.2.2 Electrochemical capacitors // . 268 4.2.3 Lithium-ion capacitors // ..278 4.2.4 Lithium-sulfur batteries // 282 4.2.5 Solar cells (photovoltaic cells) // . 292 4.2.6 Fuel cells // .. 298 4.2.7 Hydrogen storage // . 306 4.3 Applications to environment remediation // 311 4.3.1 Adsorption of polluting molecules and ions // .311 4.3.2 Sorption and recovery of oils // 321 4.3.3 Capacitive deionization for water desalination // 325 4.3.4 Catalysts // 332 4.3.5 Chemical sensors // .. 341 4.4 Concluding remarks // . 352 References // .. 354 Chapter 5: Mechanical properties and applications // .. 373 5.1 Fundamental mechanical properties // 374 5.2 Nanolubricants // . 383 5.3 Mechanical sensors // .. 387 5.4 Mechanical reinforcement // 393 5.4.1 Reinforcement of plastics // 393 5.4.2 Reinforcement of ceramics // .395 5.4.3 Reinforcement of metals // .. 400 5.5 Reduced graphene oxide .bers // .. 404 5.6 Concluding remarks // . 409 References // .. 410 Chapter 6: Thermal properties and applications // 415 6.1 Fundamental thermal properties // 416 6.2 Thermal interface materials // . 422 6.3 Nano.uids // .. 429 6.4 Thermoelectric power // . 432 6.5 Thermal energy storage // . 436 6.6 Concluding remarks // . 442 References // .. 443 Chapter 7: Biomedical properties and applications // .. 449 7.1 Biocompatibility // .450 7.2 Cell management // 454 7.2.1 Scaffolds for cell culturing // . 454 7.2.2 Stem cell differentiation // .. 458 7.2.3 Cell imaging // 459 7.2.4 Antibacterial activity // .. 460 7.3 Drug delivery systems // . 464 7.4 Biosensors // .. 469 7.5 Concluding remarks // . 476 References // .. 478 Chapter 8: Beyond graphene // 485 8.1 Graphene derivatives // 486 8.1.1 Graphane (hydrogenated graphene) // 487 8.1.2 Fluorographene (.uorinated graphene) // 495 8.1.3 Graphene oxide (oxidized graphene) // 501 8.1.4 Graphyne and graphdiyne // 514 8.2 Single-layer materials // . 519 8.2.1 Honeycomb layers of group IV elements // 519 8.2.2 Honeycomb layers of group IIIeV compounds // . 524 8.2.3 Single layers of transition metal dichalcogenides // . 531 8.3 Layer-by-layer composites // 537 8.4 Concluding remarks // . 544 References // .. 546 Chapter 9: Summary and prospects // ..561 9.1 Summary on graphene // 561 9.2 Prospects // .565 9.2.1 Importance of number of layers stacked // .. 565 9.2.2 Two kinds of graphene materials // . 570 9.2.3 Field effect and zero bandgap // 572 9.2.4 Extremely high thermal conductivity // .574 9.2.5 Basics for molecular sensing // ..576 9.2.6 Basics for foreign atom doping // .578 9.2.7 Importance of pep interaction // . 580 9.2.8 Biomedical applications // . 582 9.2.9 New composite materials // .. 585 9.2.10 Extension to organic chemistry // . 588 References // .. 589 Index // 593