定 價:¥99.00
作 者: | 劉知遠,韓旭,孫茂松 |
出版社: | 清華大學出版社 |
叢編項: | |
標 簽: | 暫缺 |
ISBN: | 9787302538523 | 出版時間: | 2020-05-01 | 包裝: | |
開本: | 16開 | 頁數(shù): | 245 | 字數(shù): |
第1 章緒論.1
1.1 知識圖譜簡介2
1.2 深度學習的優(yōu)勢和挑戰(zhàn)4
1.3 深度學習+ 知識圖譜=1 .8
1.3.1 知識的表示學習9
1.3.2 知識的自動獲取10
1.3.3 知識的計算應用13
1.4 本書結構14
1.5 本章總結14
第一篇世界知識圖譜
第2 章世界知識的表示學習19
2.1 章節(jié)引言19
2.2 相關工作20
2.2.1 知識表示學習經典模型20
2.2.2 平移模型及其拓展模型22
2.3 基于復雜關系建模的知識表示學習25
2.3.1 算法模型.25
2.3.2 實驗分析.26
2.3.3 小結32
2.4 基于關系路徑建模的知識表示學習32
2.4.1 算法模型.32
2.4.2 實驗分析.34
2.4.3 小結39
vi j 知識圖譜與深度學習
2.5 基于屬性關系建模的知識表示學習39
2.5.1 算法模型.40
2.5.2 實驗分析.41
2.5.3 小結44
2.6 融合實體描述信息的知識表示學習44
2.6.1 算法模型.45
2.6.2 實驗分析.47
2.6.3 小結54
2.7 融合層次類型信息的知識表示學習55
2.7.1 算法模型.55
2.7.2 實驗分析.57
2.7.3 小結62
2.8 融合實體圖像信息的知識表示學習62
2.8.1 算法模型.63
2.8.2 實驗分析.64
2.8.3 小結68
2.9 本章總結68
第3 章世界知識的自動獲取70
3.1 章節(jié)引言70
3.2 相關工作71
3.2.1 有監(jiān)督的關系抽取模型71
3.2.2 遠程監(jiān)督的關系抽取模型.72
3.3 基于選擇性注意力機制的關系抽取73
3.3.1 算法模型.74
3.3.2 實驗分析.78
3.3.3 小結82
3.4 基于關系層次注意力機制的關系抽取83
3.4.1 算法模型.83
目錄j vii
3.4.2 實驗分析.86
3.4.3 小結89
3.5 基于選擇性注意力機制的多語言關系抽取.89
3.5.1 算法模型.90
3.5.2 實驗分析.93
3.5.3 小結98
3.6 引入對抗訓練的多語言關系抽取98
3.6.1 算法模型.99
3.6.2 實驗分析.103
3.6.3 小結106
3.7 基于知識圖譜與文本互注意力機制的知識獲取.106
3.7.1 算法模型.107
3.7.2 實驗分析.112
3.7.3 小結117
3.8 本章總結118
第4 章世界知識的計算應用119
4.1 章節(jié)引言119
4.2 細粒度實體分類120
4.2.1 算法模型.120
4.2.2 實驗分析.122
4.2.3 小結129
4.3 實體對齊129
4.3.1 算法模型.129
4.3.2 實驗分析.132
4.3.3 小結135
4.4 融入知識的信息檢索.136
4.4.1 算法模型.136
4.4.2 實驗分析.138
4.4.3 小結143
viii j 知識圖譜與深度學習
4.5 本章總結143
第二篇語言知識圖譜
第5 章語言知識的表示學習147
5.1 章節(jié)引言147
5.2 相關工作148
5.2.1 詞表示學習148
5.2.2 詞義消歧.149
5.3 義原的表示學習149
5.3.1 算法模型.149
5.3.2 實驗分析.152
5.3.3 小結155
5.4 基于義原的詞表示學習156
5.4.1 算法模型.156
5.4.2 實驗分析.159
5.4.3 小結164
5.5 本章總結164
第6 章語言知識的自動獲取166
6.1 章節(jié)引言166
6.2 相關工作167
6.2.1 知識圖譜及其構建167
6.2.2 子詞和字級NLP 167
6.2.3 詞表示學習及跨語言的詞表示學習167
6.3 基于協(xié)同過濾和矩陣分解的義原預測168
6.3.1 算法模型.168
6.3.2 實驗分析.171
6.3.3 小結175
6.4 融入中文字信息的義原預測175
6.4.1 算法模型.176
目錄j ix
6.4.2 實驗分析.179
6.4.3 小結183
6.5 跨語言詞匯的義原預測183
6.5.1 算法模型.184
6.5.2 實驗分析.188
6.5.3 小結194
6.6 本章總結194
第7 章語言知識的計算應用195
7.1 章節(jié)引言195
7.2 義原驅動的詞典擴展.196
7.2.1 相關工作.196
7.2.2 任務設定.198
7.2.3 算法模型.199
7.2.4 實驗分析.202
7.2.5 小結207
7.3 義原驅動的神經語言模型.207
7.3.1 相關工作.208
7.3.2 任務設定.209
7.3.3 算法模型.210
7.3.4 實驗分析.213
7.3.5 小結219
7.4 本章總結219
第8 章總結與展望220
8.1 本書總結220
8.2 未來展望221
8.2.1 更全面的知識類型221
8.2.2 更復雜的知識結構222
8.2.3 更有效的知識獲取223
8.2.4 更強大的知識指導223
x j 知識圖譜與深度學習
8.2.5 更精深的知識推理224
8.3 結束語224
相關開源資源226
參考文獻228
后記.243