注冊(cè) | 登錄讀書(shū)好,好讀書(shū),讀好書(shū)!
讀書(shū)網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書(shū)科學(xué)技術(shù)計(jì)算機(jī)/網(wǎng)絡(luò)數(shù)據(jù)庫(kù)數(shù)據(jù)庫(kù)設(shè)計(jì)/管理Apache Spark流處理(影印版 英文版)

Apache Spark流處理(影印版 英文版)

Apache Spark流處理(影印版 英文版)

定 價(jià):¥120.00

作 者: Gerard Maas,弗朗索瓦·加里洛
出版社: 東南大學(xué)出版社
叢編項(xiàng):
標(biāo) 簽: 暫缺

購(gòu)買(mǎi)這本書(shū)可以去


ISBN: 9787564188238 出版時(shí)間: 2020-05-01 包裝: 平裝
開(kāi)本: 16開(kāi) 頁(yè)數(shù): 424 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  在構(gòu)建分析工具以快速獲得洞察力之前,你首先需要知道如何處理實(shí)時(shí)數(shù)據(jù)。熟悉Apache Spark的開(kāi)發(fā)人員通過(guò)這本實(shí)用指南,可以學(xué)習(xí)如何將該內(nèi)存框架用于流數(shù)據(jù)處理。你會(huì)發(fā)現(xiàn)Spark(如何讓你用與編寫(xiě)批處理作業(yè)幾乎相同的方式編寫(xiě)流作業(yè)。兩位作者Gerard Maas和Farancois Garillot將帶你探索Apache Spark的理論基礎(chǔ)知識(shí)。本書(shū)通過(guò)兩個(gè)部分對(duì)比了Spark(現(xiàn)在支持的兩種流API的差異:原始Spark Streaming庫(kù)和新的結(jié)構(gòu)化流API。學(xué)習(xí)基本的流處理概念并研究不同的流體系結(jié)構(gòu)通過(guò)實(shí)例探討結(jié)構(gòu)化流處理;詳細(xì)介紹流處理的不同方面。利用Spark流創(chuàng)建和操作流作業(yè)和應(yīng)用程序;將Spark流與其他Spark API集成。學(xué)習(xí)高級(jí)Spark流處理技術(shù),包括近似算法和機(jī)器學(xué)習(xí)算法。將Apache Spark與其他流處理項(xiàng)目進(jìn)行比較,包括Apache Storm、Apache Flink和Apache Kafka Strearns。

作者簡(jiǎn)介

暫缺《Apache Spark流處理(影印版 英文版)》作者簡(jiǎn)介

圖書(shū)目錄

Foreword
Preface
Part Ⅰ. Fundamentals of Stream Processing with Apache Spark
1. Introducing Stream Processing
What Is Stream Processing?
Batch Versus Stream Processing
The Notion of Time in Stream Processing
The Factor of Uncertainty
Some Examples of Stream Processing
Scaling Up Data Processing
MapReduce
The Lesson Learned: Scalability and Fault Tolerance
Distributed Stream Processing
Stateful Stream Processing in a Distributed System
Introducing Apache Spark
The First Wave: Functional APIs
The Second Wave: SQL
A Unified Engine
Spark Components
Spark Streaming
Structured Streaming
Where Next?
2. Stream-Processing Model
Sources and Sinks
Immutable Streams Defined from One Another
Transformations and Aggregations
Window Aggregations
Tumbling Windows
Sliding Windows
Stateless and Stateful Processing
Stateful Streams
An Example: Local Stateful Computation in Scala
A Stateless Definition of the Fibonacci Sequence as a Stream
Transformation
Stateless or Stateful Streaming
The Effect of Time
Computing on Timestamped Events
Timestamps as the Provider of the Notion of Time
Event Time Versus Processing Time
Computing with a Watermark
Summary
3. Streaming Architectures
Components of a Data Platform
Architectural Models
The Use of a Batch-Processing Component in a Streaming Application
Referential Streaming Architectures
The Lambda Architecture
The Kappa Architecture
Streaming Versus Batch Algorithms
Streaming Algorithms Are Sometimes Completely Different in Nature
……

本目錄推薦

掃描二維碼
Copyright ? 讀書(shū)網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)