注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當前位置: 首頁出版圖書科學技術(shù)計算機/網(wǎng)絡(luò)計算機輔助設(shè)計與工程計算預測理論與方法及其MATLAB實現(xiàn)

預測理論與方法及其MATLAB實現(xiàn)

預測理論與方法及其MATLAB實現(xiàn)

定 價:¥68.00

作 者: 許國根,賈瑛,黃智勇,沈可可 著
出版社: 北京航空航天大學出版社
叢編項:
標 簽: 暫缺

ISBN: 9787512433342 出版時間: 2020-09-01 包裝: 平裝
開本: 16開 頁數(shù): 340 字數(shù):  

內(nèi)容簡介

  本書是作者撰寫的MATLAB應用系列之一,此外還包括《模式識別與智能計算的MATLAB實現(xiàn)(第2版)》《z優(yōu)化方法及其MATLAB實現(xiàn)》。 本書按照理論基礎(chǔ)、算法模型、實例三個內(nèi)容對預測技術(shù)進行闡述,著重介紹算法程序和應用實例,簡單介紹定性預測技術(shù),詳細介紹回歸分析、時間序、神經(jīng)網(wǎng)絡(luò)、灰色系統(tǒng)等常用的定量預測技術(shù)。 本書可作為高等院校工業(yè)工程、管理科學與工程、經(jīng)濟金融專業(yè)的本科生或研究生的教材或教學參考書,也可供需進行預測活動的商業(yè)、生產(chǎn)經(jīng)營、金融等從業(yè)人員、組織或管理人員、自然學科科研工作者及數(shù)學建模愛好者參考。

作者簡介

  許國根,現(xiàn)為火箭軍工程大學化學教研室教授,曾多次獲得軍隊科技進步獎一、二、三等獎多次,發(fā)表著作與論文數(shù)十篇,出版圖書數(shù)十本。

圖書目錄

第1章 預測概述 1
1.1 預測的分類 1
1.2 預測的步驟 2
1.3 預測的精度 4
第2章 定性預測方法 6
2.1 市場調(diào)查預測法 6
2.1.1 經(jīng)營管理人員意見調(diào)查預測法 6
2.1.2 銷售人員意見調(diào)查預測法 7
2.1.3 商品展銷、訂貨會調(diào)查預測法 7
2.1.4 試銷調(diào)查預測法 8
2.2 集合意見預測法 8
2.3 專家會議預測法 8
2.3.1 交鋒式會議法 8
2.3.2 非交鋒式會議法 8
2.3.3 混合式會議法 9
2.3.4 頭腦風暴法 9
2.3.5 德爾菲法 10
2.4 類推預測法 13
2.4.1 類推預測法的基本原理 13
2.4.2 類推預測法的應用 14
2.5 擴散指數(shù)法 14
第3章 回歸分析預測法 16
3.1 回歸分析預測法概述 16
3.1.1 回歸模型的基本假定 17
3.1.2 相關(guān)關(guān)系與因果關(guān)系18
3.1.3 相關(guān)系數(shù) 19
3.1.4 異常點、高杠桿點、強影響觀測值和缺失值21
3.2 一元線性回歸分析預測法 22
3.2.1 一元線性回歸模型 22
3.2.2 回歸方程的檢驗 22
3.2.3 回歸模型預測 25
3.3 多元線性回歸分析預測法 26
3.3.1 多元線性回歸模型 26
3.3.2 回歸方程的檢驗 27
3.3.3 回歸模型預測 28
3.3.4 帶約束條件的回歸模型 28
3.4 違背回歸基本假定的回歸模型 29
3.4.1 多重共線性 29
3.4.2 逐步回歸法和嶺回歸估計法 33
3.4.3 自相關(guān) 35
3.4.4 異方差 41
3.4.5 隨機自變量與模型設(shè)定誤差 47
3.4.6 樣本觀察值分組平均數(shù)據(jù)的回歸參數(shù)估計 48
3.4.7 模型的制定偏誤 49
3.4.8 模型變量的觀測誤差 50
3.5 非線性回歸分析預測法 50
3.5.1 常用的可轉(zhuǎn)化為一元線性回歸的模型 50
3.5.2 一元多項式回歸 52
3.6 二項Logistic回歸分析預測法 53
3.6.1 二項Logistic回歸模型 53
3.6.2 混合Logistic模型 53
3.6.3 邏輯模型的估計方法 54
3.6.4 顯著性檢驗 58
3.7 離散變量回歸模型預測法 59
3.7.1 帶虛擬變量的回歸模型 59
3.7.2 泊松回歸模型 64
3.7.3 負二項回歸模型 65
3.8 偏最小二乘方法預測法 66
3.8.1 主成分回歸模型 66
3.8.2 偏最小二乘回歸模型 69
3.9 聯(lián)立方程回歸模型預測法 71
3.9.1 變量和方程分類 71
3.9.2 聯(lián)立方程模型的類型 71
3.9.3 同時方程模型的識別 73
3.9.4 聯(lián)立方程模型的估計方法 74
3.10 分布滯后模型和自回歸模型預測法 77
3.10.1 短期效應和長期效應 78
3.10.2 分布滯后模型的直接估計法 78
3.10.3 自回歸模型 81
3.10.4 自回歸模型的估計 83
3.11 回歸分析預測法的MATLAB實戰(zhàn) 88
第4章 時間序列預測法 123
4.1 時間序列概述 123
4.1.1 時間序列的基本概念 123
4.1.2 時間序列的特點 125
4.1.3 時間序列特征的識別 126
4.1.4 非平穩(wěn)數(shù)據(jù)的處理 128
4.2 指數(shù)平滑預測模型 129
4.2.1 移動平均預測法 129
4.2.2 指數(shù)平滑預測法 130
4.2.3 Holt指數(shù)平滑預測法 132
4.2.4 Holt-Winters指數(shù)平滑預測法 133
4.2.5 具有季節(jié)性特點的時間序列的預測 134
4.3 自回歸過程模型AR(p) 135
4.3.1 自回歸的平穩(wěn)條件 135
4.3.2 自回歸過程的自相關(guān)系數(shù) 136
4.3.3 自回歸過程的識別、估計與檢驗 137
4.4 移動平均過程模型MA(q) 138
4.4.1 移動平均過程的可轉(zhuǎn)換條件 138
4.4.2 移動平均過程的自相關(guān)系數(shù) 139
4.4.3 移動平均過程的識別、估計與檢驗 139
4.5 自回歸移動平均模型ARMA(p,q) 140
4.5.1 自回歸移動平均模型的概念 140
4.5.2 ARMA模型的識別、定階與檢驗 140
4.6 ARIMA模型 142
4.7 條件異方差模型(ARCH) 142
4.8 均值生成函數(shù)法 143
4.8.1 均生函數(shù) 143
4.8.2 周期外延預測模型 144
4.8.3 動態(tài)數(shù)據(jù)的雙向差分建模 148
4.8.4 0 1時間序列的分析與建模 152
4.9 時間序列預測的MATLAB實戰(zhàn) 153
第5章 馬爾可夫鏈預測法168
5.1 基礎(chǔ)知識 168
5.1.1 基本概念 168
5.1.2 平穩(wěn)分布和遍歷性 169
5.2 狀態(tài)空間的劃分 170
5.2.1 經(jīng)驗分組法 170
5.2.2 樣本均值、均方差分級法 170
5.2.3 有序樣本聚類法 171
5.3 轉(zhuǎn)移概率的計算和檢驗 172
5.3.1 馬氏鏈轉(zhuǎn)移概率的計算 172
5.3.2 馬氏性的檢驗 173
5.3.3 齊次性的檢驗 173
5.4 馬氏鏈預測法模型 173
5.4.1 基于絕對分布的馬氏鏈預測法 173
5.4.2 疊加馬氏鏈預測法 174
5.4.3 加權(quán)馬氏鏈預測法 175
5.4.4 吸收態(tài)馬氏鏈預測法 175
5.5 馬氏鏈預測法的MATLAB實戰(zhàn) 176
第6章 灰色預測 186
6.1 灰色系統(tǒng)的基礎(chǔ)知識 186
6.1.1 灰 數(shù) 186
6.1.2 灰數(shù)白化與灰度 187
6.1.3 灰色序列生成算子 187
6.2 灰色分析 189
6.2.1 灰色關(guān)聯(lián)分析 189
6.2.2 無量綱化關(guān)鍵算子 190
6.2.3 數(shù)據(jù)預處理 191
6.2.4 關(guān)聯(lián)分析的主要步驟 191
6.3 灰色系統(tǒng)建模 192
6.3.1 GM(1,1)模型 192
6.3.2 GM(1,1)模型檢驗 193
6.3.3 GM(1,1)殘差修正模型 194
6.3.4 GM(M,N)模型 195
6.3.5 GM(1,N)模型 196
6.3.6 GM(0,N)模型 197
6.3.7 灰色Verhulst模型 197
6.3.8 GM(1,1)冪模型 198
6.3.9 灰色災變預測模型 198
6.4 模型的改進 199
6.4.1 基于殘差修正的改進模型 199
6.4.2 基于初始條件和信息更新的改進模型 200
6.4.3 基于數(shù)據(jù)變換的改進模型 201
6.4.4 針對內(nèi)部建模機制的改進模型 204
6.5 灰色預測法的MATLAB實戰(zhàn) 206
第7章 人工神經(jīng)網(wǎng)絡(luò)預測法 211
7.1 人工神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)知識 211
7.1.1 人工神經(jīng)元 211
7.1.2 傳遞函數(shù) 212
7.1.3 網(wǎng)絡(luò)的拓撲結(jié)構(gòu) 212
7.1.4 網(wǎng)絡(luò)的結(jié)構(gòu)設(shè)計 215
7.1.5 神經(jīng)網(wǎng)絡(luò)的學習規(guī)則 215
7.1.6 神經(jīng)網(wǎng)絡(luò)的分類和特點 216
7.2 BP人工神經(jīng)網(wǎng)絡(luò) 217
7.2.1 BP算法 217
7.2.2 BP算法的改進 218
7.3 徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)(RBF) 219
7.3.1 RBF的結(jié)構(gòu)與學習算法 219
7.3.2 RBF神經(jīng)網(wǎng)絡(luò)與BP神經(jīng)網(wǎng)絡(luò)的比較 221
7.4 人工神經(jīng)網(wǎng)絡(luò)應用要點 221
7.5 人工神經(jīng)網(wǎng)絡(luò)方法的缺陷 223
7.6 人工神經(jīng)網(wǎng)絡(luò)預測法的MATLAB實戰(zhàn) 223
第8章 基于分形理論的預測法 233
8.1 分形理論的基礎(chǔ)知識 233
8.1.1 分形理論的提出 233
8.1.2 分形的定義 234
8.1.3 分形的特性 234
8.1.4 分形維數(shù)的定義 236
8.2 常維和變維分形預測 238
8.3 時間序列的Hurst指數(shù)與R/S分析法 239
8.3.1 Hurst指數(shù)及其分形預測 239
8.3.2 Takens相空間重構(gòu)方法 240
8.4 基于分形理論預測法的MATLAB實戰(zhàn) 243
第9章 基于小波分析的預測法 247
9.1 小波分析的數(shù)學基礎(chǔ) 247
9.1.1 小波的定義 248
9.1.2 小波變換 250
9.1.3 小波函數(shù)的選擇 251
9.2 多分辨分析 251
9.2.1 多分辨分析的基本原理 252
9.2.2 Mallat算法 252
9.3 小波包分析 253
9.3.1 小波包的定義 254
9.3.2 小波包分解與重構(gòu)算法 254
9.4 時間序列的小波預測法 255
9.4.1 小波預測模型的基本思想 255
9.4.2 小波預測法的基本步驟 256
9.5 基于小波分析預測法的MATLAB實戰(zhàn) 257
第10章 支持向量機預測法 264
10.1 支持向量機理論基礎(chǔ) 264
10.1.1 VC維 264
10.1.2 期望風險 264
10.1.3 結(jié)構(gòu)風險最小化 265
10.2 支持向量機 266
10.2.1 線性可分情況 266
10.2.2 線性不可分情況 267
10.3 支持向量機回歸 269
10.3.1 損失函數(shù) 269
10.3.2 線性回歸 270
10.3.3 非線性回歸 270
10.3.4 最小二乘支持向量機回歸 271
10.4 支持向量機預測模型 272
10.5 支持向量機預測法的MATLAB實戰(zhàn) 275
第11章 模糊預測法 278
11.1 模糊系統(tǒng)理論基礎(chǔ) 278
11.1.1 模糊集合 278
11.1.2 模糊關(guān)系 280
11.1.3 模糊集合的度量 282
11.1.4 模糊規(guī)則和推理 283
11.2 模糊預測模型 284
11.2.1 模糊聚類預測模型 284
11.2.2 模糊時序分析預測模型 286
11.2.3 模糊回歸分析預測模型 288
11.2.4 模糊神經(jīng)網(wǎng)絡(luò)預測模型 290
11.3 模糊預測法的MATLAB實戰(zhàn) 292
第12章 組合預測法 301
12.1 組合預測法技術(shù) 301
12.2 預測性能評價方法 302
12.2.1 精度指標 302
12.2.2 樣本外檢驗和樣本內(nèi)檢驗 303
12.2.3 動態(tài)時間彎曲距離評價方法 303
12.2.4 二階預測有效度評價方法 303
12.2.5 預測模型的準確率 304
12.3 模型組合法 305
12.3.1 灰色馬爾可夫預測模型 305
12.3.2 灰色線性回歸預測模型 306
12.3.3 ARIMA神經(jīng)網(wǎng)絡(luò)混合預測模型 306
12.4 結(jié)果組合法 307
12.4.1 非最優(yōu)組合模型預測方法 308
12.4.2 最優(yōu)組合模型預測方法 309
12.5 基于數(shù)據(jù)預處理的組合預測模型 315
12.6 基于模型參數(shù)和結(jié)構(gòu)優(yōu)化的組合預測模型 315
12.7 基于誤差修正技術(shù)的組合預測模型 316
12.8 組合預測法的MATLAB實戰(zhàn) 318
參考文獻 330

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號