注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)概率論(第三版)

概率論(第三版)

概率論(第三版)

定 價(jià):¥69.00

作 者: 蘇淳,馮群強(qiáng) 著
出版社: 科學(xué)出版社
叢編項(xiàng):
標(biāo) 簽: 暫缺

購(gòu)買這本書可以去


ISBN: 9787030633279 出版時(shí)間: 2020-04-01 包裝: 平裝
開本: 16開 頁數(shù): 400 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  《概率論(第三版)》為中國(guó)科學(xué)技術(shù)大學(xué)數(shù)學(xué)類本科生的“概率論”教材, 既保留了第二版中原有的基本內(nèi)容: 初等概率論、隨機(jī)變量、隨機(jī)向量、數(shù)字特征與特征函數(shù)、 極限定理等, 又根據(jù)國(guó)際通用表述習(xí)慣和教學(xué)需求調(diào)整了敘述方式和部分內(nèi)容, 增加了例題, 使得主干脈絡(luò)更清楚, 枝葉更豐滿. 《概率論(第三版)》內(nèi)容豐富, 敘述嚴(yán)謹(jǐn), 深入淺出, 既以生動(dòng)淺顯的方式說明了概率論中的許多基本概念的直觀意義, 又以嚴(yán)密的數(shù)學(xué)形式陳述了這些概念的數(shù)學(xué)本質(zhì). 《概率論(第三版)》的有趣例題和大量習(xí)題有助于讀者理解和掌握概率論基礎(chǔ)知識(shí). 在教學(xué)中, 標(biāo)有*號(hào)的節(jié)或小節(jié)可以跳過不講, 不影響內(nèi)容的銜接.

作者簡(jiǎn)介

暫缺《概率論(第三版)》作者簡(jiǎn)介

圖書目錄

目錄

第三版前言
第一版前言
第 1 章 預(yù)備知識(shí) 1
¤1.1 隨機(jī)現(xiàn)象和隨機(jī)事件 1
1.2 隨機(jī)事件的運(yùn)算 3
¤1.3 古典概型 9
¤1.4 古典概型的一些例子 17
1.5 幾何概型 24
¤1.6 絮話概率論 31
第 2 章 初等概率論 35
2.1 概率論的公理化體系 35
2.1.1 什么是隨機(jī)事件 35
2.1.2 事件 . 域 36
2.1.3 關(guān)于事件 . 域的一些討論 37
2.1.4 什么是概率 40
2.1.5 概率空間的例子 44
2.2 利用概率性質(zhì)解題的一些例子 46
2.3 條件概率 55
2.3.1 條件概率的初等概念和乘法定理 56
2.3.2 全概率公式 62
2.3.3 Bayes 公式 70
2.4 一些應(yīng)用 74
2.4.1 求概率的遞推方法 74
2.4.2 秘書問題 75
2.4.3 直線上的隨機(jī)游動(dòng) 76
2.5 事件的獨(dú)立性 83
2.5.1 兩個(gè)事件的獨(dú)立性 83
2.5.2 多個(gè)事件的獨(dú)立性 86
2.5.3 獨(dú)立場(chǎng)合下的概率計(jì)算 90
第 3 章 隨機(jī)變量 95
3.1 初識(shí)隨機(jī)變量 95
3.1.1 隨機(jī)變量與隨機(jī)試驗(yàn) 95
3.1.2 隨機(jī)事件的示性函數(shù)是隨機(jī)變量 99
3.1.3 Bernoulli 隨機(jī)變量 101
3.1.4 Bernoulli 隨機(jī)變量應(yīng)用舉例 104
3.2 與 Bernoulli 試驗(yàn)有關(guān)的隨機(jī)變量 108
3.2.1 多重 Bernoulli 試驗(yàn)中的成功次數(shù) 108
3.2.2 Bernoulli 試驗(yàn)中等待成功所需的試驗(yàn)次數(shù) 112
¤3.2.3 Pascal 分布 (負(fù)二項(xiàng)分布) 117
3.2.4 區(qū)間 [0; 1] 上的均勻分布 120
3.3 隨機(jī)變量與分布函數(shù) 123
3.3.1 隨機(jī)變量及其分布函數(shù) 123
3.3.2 分布函數(shù)與隨機(jī)變量 125
3.3.3 分布函數(shù)的類型 128
3.3.4 Riemann-Stieltjes 積分與期望方差 132
3.4 Poisson 分布與指數(shù)分布 135
3.4.1 Poisson 定理 135
3.4.2 Poisson 分布的性質(zhì), 隨機(jī)和 139
3.4.3 指數(shù)分布 140
3.4.4 指數(shù)分布與 Poisson 過程的關(guān)系 142
3.5 正態(tài)分布 146
3.5.1 正態(tài)分布的定義與性質(zhì) 146
3.5.2 正態(tài)分布的高度集中性 150
3.6 隨機(jī)變量的若干變換及其分布 153
¤3.6.1 隨機(jī)變量的截尾 153
¤3.6.2 與連續(xù)型隨機(jī)變量有關(guān)的兩種變換 155
3.6.3 隨機(jī)變量的初等函數(shù) 157
¤3.7 絮話正態(tài)分布 162
3.7.1 正態(tài)分布的來歷 162
3.7.2 6. 原則 165
3.7.3 高考中的標(biāo)準(zhǔn)分 166
第 4 章 隨機(jī)向量 168
4.1 隨機(jī)向量的概念 168
4.1.1 隨機(jī)向量的定義 168
4.1.2 多維分布 169
4.2 邊緣分布與條件分布 173
4.2.1 邊緣分布與條件分布的概念 174
4.2.2 離散型場(chǎng)合 175
4.2.3 連續(xù)型場(chǎng)合: 邊緣分布與邊緣密度 180
4.2.4 連續(xù)型場(chǎng)合: 條件分布與條件密度 181
4.2.5 隨機(jī)變量的獨(dú)立性 184
4.3 常見的多維連續(xù)型分布 190
4.3.1 多維均勻分布 190
4.3.2 二維正態(tài)分布 191
4.4 隨機(jī)向量的函數(shù) 193
4.4.1 隨機(jī)變量的和 194
4.4.2 兩個(gè)隨機(jī)變量的商 198
4.4.3 多維連續(xù)型隨機(jī)向量函數(shù)的一般情形 199
¤4.4.4 最大值和最小值 204
¤4.4.5 隨機(jī)變量的隨機(jī)加權(quán)平均 207
¤4.4.6 順序統(tǒng)計(jì)量 208
4.4.7 紀(jì)錄值 212
第 5 章 數(shù)字特征與特征函數(shù) 216
5.1 矩與分位數(shù) 216
5.1.1 對(duì)于數(shù)學(xué)期望的進(jìn)一步認(rèn)識(shí) 216
5.1.2 數(shù)學(xué)期望的性質(zhì) 219
5.1.3 隨機(jī)變量的矩 223
5.1.4 方差 227
5.1.5 中位數(shù)和 p 分位數(shù) 231
¤5.2 條件期望與條件方差 235
5.2.1 條件數(shù)學(xué)期望及其應(yīng)用 236
5.2.2 連續(xù)情形下的全概率公式 244
5.2.3 數(shù)學(xué)期望的一些其他應(yīng)用 247
¤5.2.4 條件方差及其應(yīng)用 250
¤5.2.5 隨機(jī)足標(biāo)和的期望和方差 252
5.3 協(xié)方差和相關(guān)系數(shù) 255
5.3.1 協(xié)方差 256
5.3.2 相關(guān)系數(shù) 257
5.3.3 隨機(jī)向量的數(shù)字特征 264
5.4 特征函數(shù) 266
5.4.1 特征函數(shù)的定義 267
5.4.2 特征函數(shù)的性質(zhì) 269
5.4.3 關(guān)于特征函數(shù)的一些討論 273
5.4.4 特征函數(shù)的幾個(gè)初步應(yīng)用 278
5.4.5 多元特征函數(shù) 281
5.5 多維正態(tài)分布 283
5.5.1 多維正態(tài)分布的定義 284
5.5.2 多維正態(tài)分布定義的推廣 286
5.5.3 多維正態(tài)分布的性質(zhì) 287
第 6 章 極限定理 293
6.1 依概率收斂與平均收斂 293
6.1.1 依概率收斂 293
6.1.2 平均收斂 299
6.2 依分布收斂 306
6.2.1 依分布收斂的概念 306
6.2.2 連續(xù)性定理及其應(yīng)用 309
6.3 弱大數(shù)律和中心極限定理 314
6.3.1 弱大數(shù)律 315
6.3.2 Slutsky 引理 317
6.3.3 中心極限定理 319
6.3.4 獨(dú)立不同分布場(chǎng)合下的中心極限定理 327
6.3.5 關(guān)于中心極限定理成立條件的進(jìn)一步討論 336
6.3.6 多維場(chǎng)合下的中心極限定理 340
6.4 a.s. 收斂 344
6.4.1 a.s. 收斂的概念 344
6.4.2 無窮多次發(fā)生 347
6.4.3 若干引理與不等式 352
6.5 強(qiáng)大數(shù)律 356
6.5.1 獨(dú)立隨機(jī)變量級(jí)數(shù)的 a.s. 收斂性 356
6.5.2 強(qiáng)大數(shù)律 361
參考文獻(xiàn) 367
附錄 368
¤A.1 一些計(jì)數(shù)模式 368
A.1.1 關(guān)于排列組合計(jì)數(shù)模式的再認(rèn)識(shí) 368
A.1.2 多組組合 369
A.1.3 分球入盒問題 370
A.1.4 可重排列和可重組合 373
A.1.5 大間距組合 373
¤A.2 一些概念和一些定理的證明 377
A.2.1 Poisson 過程初談 377
A.2.2 反演公式與唯一性定理 379
A.2.3 連續(xù)性定理 382
¤A.3 統(tǒng)計(jì)學(xué)中的三大分布 387
A.3.1 .2 分布 388
A.3.2 t 分布 390
A.3.3 F 分布 391
A.3.4 三大分布在統(tǒng)計(jì)中的重要性 392
附表 I 常用分布表 395
附表 II Poisson 分布數(shù)值表 398
附表 III 標(biāo)準(zhǔn)正態(tài)分布數(shù)值表 400

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)