注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)微積分(英文版·第八版)

微積分(英文版·第八版)

微積分(英文版·第八版)

定 價(jià):¥95.00

作 者: 詹姆斯·斯圖爾特(James Stewart) 著,張乃岳 譯
出版社: 中國(guó)人民大學(xué)出版社
叢編項(xiàng): 高等學(xué)校數(shù)學(xué)雙語教學(xué)推薦用書
標(biāo) 簽: 暫缺

購(gòu)買這本書可以去


ISBN: 9787300280882 出版時(shí)間: 2020-05-01 包裝: 平裝
開本: 16開 頁數(shù): 668 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  The art of teaching, Mark Van Doren said, is the art of assisting discovery. I have tried to write a book that assists students in discovering calculus-both for its practical power and its surprising beauty. In this edition, as in the first seven editions, I aim to convey to the student a sense of the utility of calculus and develop technical competence, but I also strive to give some appreciation for the intrinsic beauty of the subject. Newton undoubtedly experienced a sense of triumph when he made his great discoveries. I want students to share some of that excitement.The emphasis is on understanding concepts. I think that nearly everybody agrees that this should be the primary goal of calculus instruction. In fact, the impetus for the current calculus reform movement came from the Tulane Conference in 1986, which formulated as their first recommendation:Focus on conceptual understanding.I have tried to implement this goal through the Rule of Three: Topics should be presented geometrically, numerically, and algebraically. Visualization, numerical and graphical experimentation, and other approaches have changed how we teach conceptual reasoning in fundamental ways. More recently, the Rule of Three has been expanded to become the Rule of Four by emphasizing the verbal, or descriptive, point of view as well.In writing the eighth edition my premise has been that it is possible to achieve conceptual understanding and still retain the best traditions of traditional calculus. The book contains elements of reform. but within the context of a traditional curriculum.

作者簡(jiǎn)介

暫缺《微積分(英文版·第八版)》作者簡(jiǎn)介

圖書目錄

前言
學(xué)生須知
計(jì)算器、計(jì)算機(jī)以及其他圖形設(shè)備
診斷性測(cè)試
微積分概述
第1章 函數(shù)和極限
1.1 函數(shù)表示的四種方法
1.2 函數(shù)變換
1.3 函數(shù)極限
1.4 利用極限運(yùn)算法則求極限
1.5 極限的嚴(yán)格定義
1.6 連續(xù)性
復(fù)習(xí)
求解題目的一些原則
第2章 導(dǎo)數(shù)
2.1 導(dǎo)數(shù)與變化率
2.2 函數(shù)的導(dǎo)數(shù)
2.3 微分公式
2.4 三角函數(shù)的導(dǎo)數(shù)
2.5 鏈?zhǔn)椒▌t
2.6 隱函數(shù)的導(dǎo)數(shù)
復(fù)習(xí)
第3章 微分的應(yīng)用
3.1 最大值和最小值
3.2 中值定理
3.3 導(dǎo)數(shù)值對(duì)函數(shù)形狀的影響
3.4 無窮大時(shí)的極限值;水平漸近線
3.5 函數(shù)作圖概述
3.6 原函數(shù)
復(fù)習(xí)
第4章 積分
4.1 面積和距離
4.2 定積分
探索項(xiàng)目·面積函數(shù)
4.3 微積分基本定理
4.4 不定積分和牛頓-萊布尼茨公式
4.5 換元積分法
復(fù)習(xí)
第5章 定積分的應(yīng)用
5.1 曲線間的面積
5.2 體積
5.3 旋轉(zhuǎn)體的體積
5.4 功
5.5 函數(shù)的積分平均值
復(fù)習(xí)
第6章 反函數(shù)
6.1 反函數(shù)
6.2 指數(shù)函數(shù)及其導(dǎo)數(shù)
6.3 對(duì)數(shù)函數(shù)
6.4 對(duì)數(shù)函數(shù)的導(dǎo)數(shù)
6.5 指數(shù)增長(zhǎng)與指數(shù)衰減
6.6 未定式與洛必達(dá)法則
復(fù)習(xí)
……
第7章 積分的方法
第8章 積分的進(jìn)一步應(yīng)用
第9章 微分方程
第10章 參數(shù)方程和極坐標(biāo)
第11章 偏導(dǎo)數(shù)
第12章 多重積分

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)