此書(shū)是世界圖書(shū)出版公司出版的9卷本“泡利物理學(xué)講義”中的第7卷,主題為相對(duì)論。沃爾夫?qū)?middot;泡利是20世紀(jì)卓越的理論物理學(xué)家,1945年諾貝爾物理學(xué)獎(jiǎng)得主,他在原子物理學(xué)和量子力學(xué)領(lǐng)域做出了重要貢獻(xiàn),發(fā)現(xiàn)了“泡利不相容原理”,建立了“中微子”假說(shuō),提出了二分量波函數(shù)的概念和著名的泡利自旋矩陣,并在量子場(chǎng)論、固體物理等領(lǐng)域都做了很多杰出的工作。泡利去世后,他晚年的助手查爾斯·恩斯教授編輯修訂了他生前在蘇黎世聯(lián)邦理工學(xué)院的授課講義的英文版,分6卷,分別為《電動(dòng)力學(xué)》《光學(xué)和電子論》《熱力學(xué)和氣體分子運(yùn)動(dòng)論》《統(tǒng)計(jì)力學(xué)》《波動(dòng)力學(xué)》和《場(chǎng)量子化選講》,英文版由The MIT Press出版。泡利年輕的時(shí)候還寫(xiě)過(guò)兩篇重要的長(zhǎng)達(dá)數(shù)百頁(yè)的綜述長(zhǎng)文《相對(duì)論》和《量子力學(xué)的普遍原理》,直至今日仍是相對(duì)論與量子力學(xué)領(lǐng)域重要的經(jīng)典文獻(xiàn)。1921年,泡利為德國(guó)的《數(shù)學(xué)科學(xué)百科全書(shū)》撰寫(xiě)了關(guān)于相對(duì)論的長(zhǎng)篇綜述文章,愛(ài)因斯坦閱讀后評(píng)價(jià)道:“任何該領(lǐng)域的專家都不會(huì)相信,該文出自一個(gè)年僅21歲的青年人之手,作者在文中顯示出來(lái)的對(duì)這個(gè)領(lǐng)域的理解力、熟練的數(shù)學(xué)推導(dǎo)能力、對(duì)物理深刻的洞察力、使問(wèn)題明晰的能力、系統(tǒng)的表述、對(duì)語(yǔ)言的把握、對(duì)該問(wèn)題的完整處理及對(duì)其評(píng)價(jià),使任何一個(gè)人都會(huì)感到羨慕?!?933年,泡利又為德國(guó)的《物理百科全書(shū)》撰寫(xiě)了關(guān)于量子力學(xué)的長(zhǎng)篇綜述文章,很快也成為經(jīng)典。這兩篇綜述長(zhǎng)文后來(lái)都以單行本的方式獨(dú)立出版。在泡利生命的最后一年,他又對(duì)兩書(shū)進(jìn)行了全面修訂,英文版分別由Pergamon Press和Springer-Verlag再次出版。我們將這兩本書(shū)作為“泡利物理學(xué)講義”的第7卷和第8卷一起出版。1994年,Springer-Verlag又出版了同樣由泡利晚年助手查爾斯·恩斯教授編輯的《泡利物理哲學(xué)文集》,此書(shū)包含了泡利撰寫(xiě)的關(guān)于空間、時(shí)間與因果性、對(duì)稱、泡利不相容原理和中微子等的21篇重在闡述科學(xué)思想與哲學(xué)的文章和演講稿。我們將此書(shū)作為“泡利物理學(xué)講義”的第9卷。這套“泡利物理學(xué)講義”對(duì)高等院校的學(xué)生與研究人員深刻理解物理原理會(huì)有極大的幫助。
作者簡(jiǎn)介
沃爾夫?qū)?middot;泡利(Wolfgang E. Pauli),美籍奧地利科學(xué)家、物理學(xué)家,1945年諾貝爾物理學(xué)獎(jiǎng)得主。1900年4月25日生于奧地利維也納,畢業(yè)于慕尼黑大學(xué),1958年12月15日,在瑞士蘇黎世逝世,享年58歲。泡利在原子物理學(xué)和量子力學(xué)領(lǐng)域做出了重要貢獻(xiàn),發(fā)現(xiàn)了“泡利不相容原理”,建立了“中微子”假說(shuō),提出了二分量波函數(shù)的概念和著名的泡利自旋矩陣,并在量子場(chǎng)論、固體物理等領(lǐng)域都做了很多杰出的工作。
圖書(shū)目錄
Preface by W. Pauli Preface by A. Sommerfeld Bibliography Part 1. The Foundations of the Special Theory of Relativity 1. Historical Background (Lorentz, Poincaré, Einstein) 2. The Postulate of Relativity 3. The Postulate of the Constancy of the Velocity of Light. Ritz's and Related Theories 4. The Relativity of Simultaneity. Derivation of the Lorentz Transformation from the Two Postulates. Axiomatic Nature of the Lorentz Transformation 5. Lorentz Contraction and Time Dilatation 6. Einstein's Addition Theorem for Velocities and Its Application to Aberration and the Drag Coefficient. The Doppler Effect Part 2. Mathematical Tools 7. The Four-Dimensional Space-Time World (Minkowski) 8. More General Transformation Groups 9. Tensor Calculus for Affine Transformations 10. Geometrical Meaning of the Contravariant and Covariant Components of a Vector 11. Surface and Volume Tensors. Four-Dimensional Volumes 12. Dual Tensors 13. Transition to Riemannian Geometry 14. Parallel Displacement of a Vector 15. Geodesic Lines 16. Space Curvature 17. Riemannian Coordinates and Their Applications 18. The Special Cases of Euclidean Geometry and of Constant Curvature 19. The Integral Theorems of Gauss and Stokes in a Four-Dimensional Riemannian Manifold 20. Derivation of Invariant Differential Operations, Using Geodesic Components 21. Affine Tensors and Free Vectors 22. Reality Relations 23. Infinitesimal Coordinate Transformations and Variational Theorems Part 3. Special Theory of Relativity. Further Elaborations A. Kinematics 24. Four-Dimensional Representation of the Lorentz Transformation 25. The Addition Theorem for Velocities 26. Transformation Law for Acceleration. Hyperbolic Motion B. Electrodynamics 27. Conservation of Charge. Four-Current Density 28. Covariance of the Basic Equations of Electron Theory 29. Ponderomotive Forces. Dynamics of the Electron 30. Momentum and Energy of the Electromagnetic Field. Differential and Integral Forms of the Conservation Laws 31. The Invariant Action Principle of Electrodynamics 32. Applications to Special Cases 33. Minkowski's Phenomenological Electrodynamics of Moving Bodies 34. Electron-Theoretical Derivations 35. Energy-Momentum Tensor and Ponderomotive Force in Phenomenological Electrodynamics. Joule Heat 36. Applications of the Theory C. Mechanics and General Dynamics 37. Equation of Motion. Momentum and Kinetic Energy 38. Relativistic Mechanics on a Basis Independent of Electrodynamics 39. Hamilton's Principle in Relativistic Mechanics 40. Generalized Coordinates. Canonical Form of the Equations of Motion 41. The Inertia of Energy 42. General Dynamics 43. Transformation of Energy and Momentum of a System in the Presence of External Forces 44. Applications to Special Cases. Trouton and Noble's Experiments 45. Hydrodynamics and Theory of Elasticity D. Thermodynamics and Statistical Mechanics 46. Behaviour of the Thermodynamical Quantities Under a Lorentz Transformation 47. The Principle of Least Action 48. The Application of Relativity to Statistical Mechanics 49. Special Cases