注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書工具書計(jì)算機(jī)工具書深度學(xué)習(xí)實(shí)戰(zhàn)手冊(R語言版)

深度學(xué)習(xí)實(shí)戰(zhàn)手冊(R語言版)

深度學(xué)習(xí)實(shí)戰(zhàn)手冊(R語言版)

定 價(jià):¥79.00

作 者: [印度] 普拉卡什,阿丘圖尼·斯里·克里希納·拉奧 著,王洋洋 譯
出版社: 人民郵電出版社
叢編項(xiàng): 深度學(xué)習(xí)系列
標(biāo) 簽: 暫缺

購買這本書可以去


ISBN: 9787115524256 出版時(shí)間: 2020-01-01 包裝: 平裝
開本: 16開 頁數(shù): 224 字?jǐn)?shù):  

內(nèi)容簡介

  本書介紹使用 R 語言和深度學(xué)習(xí)庫 TensorFlow、H2O 和 MXNet 構(gòu)建不同的深度學(xué)習(xí)模型的方法和原理。本書共 10 章,其中第 1、2 章介紹如何在 R 中配置不同的深度學(xué)習(xí)庫以及如何構(gòu)建神經(jīng)網(wǎng)絡(luò);第 3 ~ 7 章介紹卷積神經(jīng)網(wǎng)絡(luò)、自動(dòng)編碼器、生成模型、循環(huán)神經(jīng)網(wǎng)絡(luò)和強(qiáng)化學(xué)習(xí)的構(gòu)建方法和原理;第 8、9 章介紹深度學(xué)習(xí)在文本挖掘以及信號(hào)處理中的應(yīng)用;第 10 章介紹遷移學(xué)習(xí)以及如何利用 GPU 部署深度學(xué)習(xí)模型。本書的結(jié)構(gòu)簡單明了,每部分由準(zhǔn)備環(huán)節(jié)、動(dòng)手操作和工作原理組成,可強(qiáng)化讀者的學(xué)習(xí);內(nèi)容上覆蓋了深度學(xué)習(xí)領(lǐng)域常見的神經(jīng)網(wǎng)絡(luò)類型,并介紹了使用場景。同時(shí),書中包含大量實(shí)用的示例代碼,方便讀者應(yīng)用到實(shí)際項(xiàng)目中。本書適合有一定 R 語言編程基礎(chǔ),并且希望使用 R 語言快速開展深度學(xué)習(xí)項(xiàng)目的軟件工程師或高校師生、科研人員閱讀。

作者簡介

  關(guān)于作者 Prakash 博士是一位數(shù)據(jù)科學(xué)家和作家,目前在 ZS 咨詢公司擔(dān)任數(shù)據(jù)科學(xué)經(jīng)理。他獲得了美國威斯康星大學(xué)麥迪遜分校的工業(yè)和系統(tǒng)工程博士學(xué)位,其第 2 個(gè)工程博士學(xué)位是在英國華威大學(xué)獲得的;他之前還獲得了美國威斯康星大學(xué)麥迪遜分校的碩士學(xué)位、印度國家鑄造和鍛造技術(shù)研究所(NIFFT)的學(xué)士學(xué)位。 Prakash 在 IEEE-Trans、EJOR 和 IJPR 等多個(gè)刊物上發(fā)表了多篇文章,涉及運(yùn)籌學(xué)和管理、軟計(jì)算工具和高級(jí)算法等多個(gè)研究領(lǐng)域。Achyutuni Sri Krishna Rao 是數(shù)據(jù)科學(xué)家、土木工程師和作家,目前在 ZS 咨詢公司擔(dān)任數(shù)據(jù)科學(xué)顧問。他獲得了新加坡國立大學(xué)企業(yè)商業(yè)分析和機(jī)器學(xué)習(xí)的碩士學(xué)位、印度 Warangal 國家技術(shù)研究所的學(xué)士學(xué)位。 Sri Krishna 在土木工程研究領(lǐng)域發(fā)表了多篇文章,并參與了 Packt 出版的名為 Algorithms and Data Structures Using R 一書的寫作。關(guān)于譯者 王洋洋,計(jì)算機(jī)碩士,狂熱的數(shù)據(jù)愛好者,現(xiàn)為云網(wǎng)絡(luò)安全領(lǐng)域大數(shù)據(jù)工程師,熟悉多種編程語言、大數(shù)據(jù)技術(shù)、機(jī)器學(xué)習(xí)算法和設(shè)計(jì)模式等,對(duì)自然語言處理也頗感興趣,曾翻譯《R 圖形化數(shù)據(jù)分析》一書。

圖書目錄

第 1章 入門 1
1.1 介紹 1
1.2 安裝 R 及其 IDE 2
1.2.1 準(zhǔn)備 2
1.2.2 怎么做 2
1.3 安裝 Jupyter Notebook 應(yīng)用 3
1.3.1 怎么做 3
1.3.2 更多內(nèi)容 5
1.4 從 R 機(jī)器學(xué)習(xí)基礎(chǔ)開始 5
1.4.1 怎么做 6
1.4.2 工作原理 9
1.5 在 R 中安裝深度學(xué)習(xí)的工具 包 11
1.6 在 R 中安裝 MXNet 11
1.6.1 做好準(zhǔn)備 11
1.6.2 怎么做 12
1.7 在 R 中安裝 TensorFlow 13
1.7.1 做好準(zhǔn)備 13
1.7.2 怎么做 14
1.7.3 工作原理 15
1.8 在 R 中安裝 H2O 15
1.8.1 做好準(zhǔn)備 15
1.8.2 怎么做 16
1.8.3 工作原理 17
1.8.4 更多內(nèi)容 20
1.9 使用 Docker 一次安裝 3 個(gè)包 20
1.9.1 做好準(zhǔn)備 20
1.9.2 怎么做 21
1.9.3 更多內(nèi)容 22
第 2章 R深度學(xué)習(xí) 23
2.1 始于邏輯回歸 23
2.1.1 做好準(zhǔn)備 23
2.1.2 怎么做 24
2.2 介紹數(shù)據(jù)集 25
2.2.1 做好準(zhǔn)備 25
2.2.2 怎么做 25
2.3 使用 H2O 執(zhí)行邏輯回歸 26
2.3.1 做好準(zhǔn)備 26
2.3.2 怎么做 27
2.3.3 工作原理 28
2.4 使用 TensorFlow 執(zhí)行邏輯回歸 30
2.4.1 做好準(zhǔn)備 30
2.4.2 怎么做 30
2.4.3 工作原理 32
2.5 可視化 TensorFlow 圖 33
2.5.1 做好準(zhǔn)備 33
2.5.2 怎么做 34
2.5.3 工作原理 36
2.6 從多層感知器開始 37
2.6.1 做好準(zhǔn)備 37
2.6.2 怎么做 38
2.6.3 更多內(nèi)容 38
2.7 使用 H2O 建立神經(jīng)網(wǎng)絡(luò) 39
2.7.1 做好準(zhǔn)備 39
2.7.2 怎么做 39
2.7.3 工作原理 41
2.8 使用 H2O 中的網(wǎng)格搜索調(diào)整超參數(shù) 42
2.8.1 做好準(zhǔn)備 42
2.8.2 怎么做 42
2.8.3 工作原理 43
2.9 使用 MXNet 建立神經(jīng)網(wǎng)絡(luò) 44
2.9.1 做好準(zhǔn)備 44
2.9.2 怎么做 44
2.9.3 工作原理 46
2.10 使用 TensorFlow 建立神經(jīng)網(wǎng)絡(luò) 46
2.10.1 做好準(zhǔn)備 46
2.10.2 怎么做 46
2.10.3 工作原理 49
2.10.4 更多內(nèi)容 50
第3章 卷積神經(jīng)網(wǎng)絡(luò) 52
3.1 介紹 52
3.2 下載并配置圖像數(shù)據(jù)集 53
3.2.1 做好準(zhǔn)備 54
3.2.2 怎么做 54
3.2.3 工作原理 57
3.3 學(xué)習(xí) CNN 分類器的架構(gòu) 58
3.3.1 做好準(zhǔn)備 58
3.3.2 怎么做 58
3.3.3 工作原理 59
3.4 使用函數(shù)初始化權(quán)重和偏差 60
3.4.1 做好準(zhǔn)備 61
3.4.2 怎么做 61
3.4.3 工作原理 61
3.5 使用函數(shù)創(chuàng)建一個(gè)新的卷積層 61
3.5.1 做好準(zhǔn)備 61
3.5.2 怎么做 62
3.5.3 工作原理 64
3.6 使用函數(shù)創(chuàng)建一個(gè)扁平化的卷積層 65
3.6.1 做好準(zhǔn)備 65
3.6.2 怎么做 65
3.6.3 工作原理 65
3.7 使用函數(shù)扁平化密集連接層 66
3.7.1 做好準(zhǔn)備 66
3.7.2 怎么做 66
3.7.3 工作原理 67
3.8 定義占位符變量 67
3.8.1 做好準(zhǔn)備 67
3.8.2 怎么做 67
3.8.3 工作原理 68
3.9 創(chuàng)建第 一個(gè)卷積層 68
3.9.1 做好準(zhǔn)備 69
3.9.2 怎么做 69
3.9.3 工作原理 70
3.10 創(chuàng)建第二個(gè)卷積層 70
3.10.1 做好準(zhǔn)備 70
3.10.2 怎么做 71
3.10.3 工作原理 71
3.11 扁平化第二個(gè)卷積層 72
3.11.1 做好準(zhǔn)備 72
3.11.2 怎么做 72
3.11.3 工作原理 72
3.12 創(chuàng)建第 一個(gè)完全連接的層 73
3.12.1 做好準(zhǔn)備 73
3.12.2 怎么做 73
3.12.3 工作原理 73
3.13 將 dropout 應(yīng)用于第 一個(gè)完全連接的層 73
3.13.1 做好準(zhǔn)備 74
3.13.2 怎么做 74
3.13.3 工作原理 74
3.14 創(chuàng)建第二個(gè)帶有 dropout 的完全連接層 74
3.14.1 做好準(zhǔn)備 74
3.14.2 怎么做 75
3.14.3 工作原理 75
3.15 應(yīng)用 Softmax 激活以獲得預(yù)測的類 75
3.15.1 做好準(zhǔn)備 75
3.15.2 怎么做 75
3.16 定義用于優(yōu)化的成本函數(shù) 76
3.16.1 做好準(zhǔn)備 76
3.16.2 怎么做 76
3.16.3 工作原理 76
3.17 執(zhí)行梯度下降成本優(yōu)化 77
3.17.1 做好準(zhǔn)備 77
3.17.2 怎么做 77
3.18 在 TensorFlow 會(huì)話中執(zhí)行圖 77
3.18.1 做好準(zhǔn)備 77
3.18.2 怎么做 78
3.18.3 工作原理 78
3.19 評(píng)估測試數(shù)據(jù)的性能 79
3.19.1 做好準(zhǔn)備 79
3.19.2 怎么做 79
3.19.3 工作原理 81
第4章 使用自動(dòng)編碼器的數(shù)據(jù)表示 83
4.1 介紹 83
4.2 構(gòu)建自動(dòng)編碼器 84
4.2.1 做好準(zhǔn)備 85
4.2.2 怎么做 85
4.3 數(shù)據(jù)歸一化 86
4.3.1 做好準(zhǔn)備 86
4.3.2 怎么做 88
4.4 構(gòu)建正則自動(dòng)編碼器 92
4.4.1 做好準(zhǔn)備 92
4.4.2 怎么做 92
4.4.3 工作原理 92
4.5 微調(diào)自動(dòng)編碼器的參數(shù) 93
4.6 構(gòu)建棧式自動(dòng)編碼器 94
4.6.1 做好準(zhǔn)備 94
4.6.2 怎么做 95
4.7 構(gòu)建降噪自動(dòng)編碼器 96
4.7.1 做好準(zhǔn)備 96
4.7.2 怎么做 96
4.7.3 工作原理 101
4.8 構(gòu)建并比較隨機(jī)編碼器和解碼器 102
4.8.1 做好準(zhǔn)備 103
4.8.2 怎么做 103
4.9 從自動(dòng)編碼器學(xué)習(xí)流形 109
4.10 評(píng)估稀疏分解 113
4.10.1 做好準(zhǔn)備 114
4.10.2 怎么做 114
4.10.3 工作原理 115
第5章 深度學(xué)習(xí)中的生成模型 116
5.1 比較主成分分析和受限玻爾茲曼機(jī) 116
5.1.1 做好準(zhǔn)備 117
5.1.2 怎么做 118
5.2 為伯努利分布輸入配置受限玻爾茲曼機(jī) 121
5.2.1 做好準(zhǔn)備 122
5.2.2 怎么做 122
5.3 訓(xùn)練受限玻爾茲曼機(jī) 122
5.3.1 做好準(zhǔn)備 123
5.3.2 怎么做 123
5.4 RBM 的反向或重構(gòu)階段 124
5.4.1 做好準(zhǔn)備 124
5.4.2 怎么做 124
5.5 了解重構(gòu)的對(duì)比散度 125
5.5.1 做好準(zhǔn)備 125
5.5.2 怎么做 125
5.5.3 工作原理 126
5.6 初始化并啟動(dòng)一個(gè)新的 TensorFlow 會(huì)話 126
5.6.1 做好準(zhǔn)備 126
5.6.2 怎么做 127
5.6.3 工作原理 128
5.7 評(píng)估 RBM 的輸出 129
5.7.1 做好準(zhǔn)備 130
5.7.2 怎么做 130
5.7.3 工作原理 131
5.8 為協(xié)同過濾構(gòu)建一個(gè)受限玻爾茲曼機(jī) 132
5.8.1 做好準(zhǔn)備 132
5.8.2 怎么做 132
5.9 執(zhí)行一個(gè)完整的 RBM 訓(xùn)練 135
5.9.1 做好準(zhǔn)備 137
5.9.2 怎么做 137
5.10 構(gòu)建深度信念網(wǎng)絡(luò) 139
5.10.1 做好準(zhǔn)備 140
5.10.2 怎么做 141
5.10.3 工作原理 144
5.11 實(shí)現(xiàn)前饋反向傳播神經(jīng)網(wǎng)絡(luò) 145
5.11.1 做好準(zhǔn)備 145
5.11.2 怎么做 146
5.11.3 工作原理 150
5.12 建立一個(gè)深度受限玻爾茲曼機(jī) 150
5.12.1 做好準(zhǔn)備 150
5.12.2 怎么做 151
5.12.3 工作原理 156
第6章 循環(huán)神經(jīng)網(wǎng)絡(luò) 157
6.1 建立一個(gè)基本的循環(huán)神經(jīng)網(wǎng)絡(luò) 157
6.1.1 做好準(zhǔn)備 157
6.1.2 怎么做 158
6.1.3 工作原理 160
6.2 建立一個(gè)雙向 RNN 模型 161
6.2.1 做好準(zhǔn)備 162
6.2.2 怎么做 162
6.3 建立一個(gè)深度 RNN 模型 165
6.4 建立一個(gè)基于長短期記憶的序列模型 166
6.4.1 怎么做 167
6.4.2 工作原理 167
第7章 強(qiáng)化學(xué)習(xí) 170
7.1 介紹 170
7.2 建立馬爾可夫決策過程 171
7.2.1 做好準(zhǔn)備 171
7.2.2 怎么做 172
7.3 執(zhí)行基于模型的學(xué)習(xí) 177
7.4 進(jìn)行無模型學(xué)習(xí) 180
7.4.1 做好準(zhǔn)備 180
7.4.2 怎么做 181
第8章 深度學(xué)習(xí)在文本挖掘中的應(yīng)用 185
8.1 對(duì)文本數(shù)據(jù)進(jìn)行預(yù)處理并提取情感 185
8.1.1 怎么做 185
8.1.2 工作原理 191
8.2 使用 tf-idf 分析文檔 192
8.2.1 怎么做 192
8.2.2 工作原理 194
8.3 使用 LSTM 網(wǎng)絡(luò)執(zhí)行情感預(yù)測 194
8.3.1 怎么做 194
8.3.2 工作原理 198
8.4 使用 text2vec 示例的應(yīng)用程序 198
8.4.1 怎么做 198
8.4.2 工作原理 201
第9章 深度學(xué)習(xí)在信號(hào)處理中的應(yīng)用 202
9.1 介紹并預(yù)處理音樂 MIDI 文件 202
9.1.1 做好準(zhǔn)備 202
9.1.2 怎么做 203
9.2 建立 RBM 模型 204
9.2.1 做好準(zhǔn)備 204
9.2.2 怎么做 204
9.3 生成新的音符 206
第 10章 遷移學(xué)習(xí) 208
10.1 介紹 208
10.2 舉例說明預(yù)訓(xùn)練模型的使用 209
10.2.1 做好準(zhǔn)備 210
10.2.2 怎么做 210
10.3 構(gòu)建遷移學(xué)習(xí)模型 213
10.3.1 做好準(zhǔn)備 213
10.3.2 怎么做 213
10.4 構(gòu)建圖像分類模型 216
10.4.1 做好準(zhǔn)備 216
10.4.2 怎么做 216
10.5 在 GPU 上訓(xùn)練深度學(xué)習(xí)模型 219
10.5.1 做好準(zhǔn)備 219
10.5.2 怎么做 220
10.6 比較使用 CPU 和 GPU 的性能 221
10.6.1 做好準(zhǔn)備 221
10.6.2 怎么做 222
10.6.3 更多內(nèi)容 224
10.6.4 另請參閱 224

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)