注冊(cè) | 登錄讀書(shū)好,好讀書(shū),讀好書(shū)!
讀書(shū)網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書(shū)科學(xué)技術(shù)自然科學(xué)物理學(xué)單擺:共振層分岔樹(shù)到混沌(英文版 精)

單擺:共振層分岔樹(shù)到混沌(英文版 精)

單擺:共振層分岔樹(shù)到混沌(英文版 精)

定 價(jià):¥99.00

作 者: 羅朝俊,(瑞典)伊布拉基莫夫,(墨)阿弗萊諾維奇
出版社: 高等教育出版社
叢編項(xiàng): 非線性物理科學(xué)
標(biāo) 簽: 暫缺

購(gòu)買(mǎi)這本書(shū)可以去


ISBN: 9787040480047 出版時(shí)間: 2017-10-01 包裝:
開(kāi)本: 16開(kāi) 頁(yè)數(shù): 238 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  《單擺:共振層、分岔樹(shù)到混沌(英文版)/非線性物理科學(xué)》是一本關(guān)于單擺共振層及其周期運(yùn)動(dòng)到混沌的著作。周期強(qiáng)迫振動(dòng)擺是一個(gè)典型且常見(jiàn)的*簡(jiǎn)單的非線性振子,具有復(fù)雜和豐富的非線性動(dòng)力學(xué)行為。雖然此類(lèi)周期強(qiáng)迫振動(dòng)擺足一個(gè)*簡(jiǎn)單的非線性動(dòng)力系統(tǒng),但要找到它的周期運(yùn)動(dòng)到混沌非常困難。并且這一周期強(qiáng)迫振動(dòng)擺固有的復(fù)雜動(dòng)力學(xué)行為遠(yuǎn)遠(yuǎn)超出了我們基于傳統(tǒng)線性動(dòng)力系統(tǒng)的想象。到目前為止,人們?nèi)匀徊恢来祟?lèi)周期強(qiáng)迫振動(dòng)鐘擺的復(fù)雜運(yùn)動(dòng)及其物理學(xué)本質(zhì)和數(shù)學(xué)理論,《單擺:共振層、分岔樹(shù)到混沌(英文版)/非線性物理科學(xué)》中所展示的結(jié)果將為探索周期強(qiáng)迫振動(dòng)擺的復(fù)雜非線性動(dòng)力學(xué)行為帶來(lái)一些新穎觀點(diǎn)。作者羅朝俊教授為美國(guó)南伊利諾伊州州立大學(xué)終身教授、國(guó)際非線性系統(tǒng)領(lǐng)域知名學(xué)者。

作者簡(jiǎn)介

  羅朝俊,教授為美國(guó)南伊利諾伊州州立大學(xué)終身教授、國(guó)際非線性系統(tǒng)領(lǐng)域知名學(xué)者。

圖書(shū)目錄

Preface
1 Resonance and Hamiltonian Chaos
1.1 Stochastic layers
1.1.1 Definitions
1.1.2 Approximate criteria
1.2 Resonant separatrix layers
1.2.1 Layer dynamics
1.2.2 Approximate criteria
References
2 Hamiltonian Chaos in Pendulum
2.1 Resonance conditions
2.1.1 Conservative system
2.1.2 Resonance and energy increments
2.2 Stochastic layers
2.3 Resonant layers
2.3.1 Librational resonant layers
2.3.2 Rotational resonant layers
2.4 Numerical simulations
References
3 Parametric Chaos in Pendulum
3.1 Resonance and energy increment
3.1.1 Libration
3.1.2 Rotation
3.2 Parametric stochastic layers
3.2.1 Analytic predictions
3.2.2 Numerical predictions
3.2.3 Illustrations
3.2.4 Numerical simulations
3.3 Parametric resonant layers
3.3.1 Approximate predictions
3.3.2 Numerical illustrations
References
4 Nonlinear Discrete Systems
4.1 Definitions
4.2 Fixed points and stability
4.3 Stability switching theory
4.4 Bifurcation theory
References
5 Periodic Flows in Continuous Systems
5.1 Discretization-based methods
5.2 Discrete Fourier series
References
6 Periodic Motions to Chaos in Pendulum
6.1 Periodic motions in pendulum
6.1.1 Implicit discretization
6.1.2 Periodic motions
6.2 Bifurcation trees to chaos
6.2.1 Period-1 motions to chaos
6.2.2 Period-3 motions to chaos
6.2.3 Period-5 motions to chaos
6.3 Frequency-amplitude characteristics
6.3.1 Period-1 to period-4 motions
6.3.2 Period-3 to period-6 motions
6.3.3 Symmetric to asymmetric period-5 motions.
6.4 Bifurcation trees varying with excitation amplitude
6.4.1 Non-travelable period-1 motions to chaos
6.4.2 Non-travelable period-3 motions to chaos
6.4.3 Travelable period-1 motions to chaos
6.4.4 Travelable period-2 motions to chaos
6.5 Numerical simulations
6.5.1 Non-travelable periodic motions
6.5.2 Travelable periodic motions
References
Subject Index

本目錄推薦

掃描二維碼
Copyright ? 讀書(shū)網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)