注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)數(shù)學(xué)非線性波方程在不變流形上的精確解和分支(英文)

非線性波方程在不變流形上的精確解和分支(英文)

非線性波方程在不變流形上的精確解和分支(英文)

定 價:¥178.00

作 者: 李繼彬 著
出版社: 科學(xué)出版社
叢編項:
標(biāo) 簽: 暫缺

ISBN: 9787030609502 出版時間: 1900-01-01 包裝: 平裝
開本: 16開 頁數(shù): 354 字?jǐn)?shù):  

內(nèi)容簡介

  本書的**個目的是對行波解的分類和對奇異非線性行波方程所產(chǎn)生的峰、周期峰、偽峰和緊子的概念進(jìn)行更系統(tǒng)的解釋。從奇異攝動理論的動力系統(tǒng)和思想,我們證明周期性峰是行波系統(tǒng)的兩個時間尺度光滑經(jīng)典解。PeaKon是下限意義下的極限解:(i)在固定參數(shù)條件下,Peaon是一類周期性Peaon解的一個極限解;(ii)具有可變參數(shù)的Peaon是一個偽Pekon族的限制解。我們注意到,一個可積的非線性偏微分方程(非線性波動方程)的行波系統(tǒng)通常是一個可積的常微分方程組。因此,行波系統(tǒng)的相位軌道引起波函數(shù)的輪廓,并且行進(jìn)系統(tǒng)的不同相位軌道引起波函數(shù)的不同輪廓。如果可能的話,這樣的非線性行進(jìn)系統(tǒng),因為這些解析解對于理解波函數(shù)的性質(zhì)是有用的。本書的第二個目的是引入動力系統(tǒng)方法尋找更具物理意義的可積系統(tǒng)的精確解。

作者簡介

暫缺《非線性波方程在不變流形上的精確解和分支(英文)》作者簡介

圖書目錄

Contents
Preface
Chapter 1 Some Shallow Water Wave Equations Which Yield Peakons and Compactons 1
1.1 Shallow water wave equations derived from the governing equations via double asymptotic power series expansions 1
1.2 Dynamics of traveling wave solutions to a new highly nonlinear shallow water wave equation 7
Chapter 2 Classiˉcation of Traveling Wave Solutions of the Singular Nonlinear Wave Equations 13
2.1 Some preliminary knowledge of dynamical systems 13
2.2 Bifurcations of phase portraits of travelling wave equations having singular straight lines 18
2.3 Main theorems to identify the wave proˉles for a singular traveling wave systems of the ˉrst class 23
2.4 Classiˉcation of the proˉles of traveling wave solutions via known phase orbits 28
Chapter 3 Exact Parametric Representations of the Orbits Deˉned by A Polynomial Di.erential Systems 54
3.1 Exact parametric representations of the orbits deˉned by the planar quadratic Hamiltonian systems 54
3.2 Exact parametric representations of the orbits deˉned by the symmetric planar cubic Hamiltonian systems 62
Chapter 4 Bifurcations and Exact Solutions of the Traveling Wave Systems for Dullin-Gottwald-Holm Equation 69
4.1 Bifurcations of phase portraits of systems (4.4) 70
4.2 Classiˉcation of all traveling wave solutions of system (4.4)+ and explicit exact parametric representations of the solutions of system (4:4)+ and (4.6) 72
4.3 Classiˉcation of all traveling wave solutions of system (4.4). and explicit exact parametric representations of the solutions of systems (4.6). and (4.4) 86
Chapter 5 Variform Exact One-Peakon Solutions for Some Singular Nonlinear Traveling Wave Equations of the First Kind 96
5.1 Peakon solutions of the generalized Camassa-Holm equation (5.1) 97
5.2 Peakon solutions of the nonlinear dispersion equation K(m; n) 101
5.3 Peakon solutions of the two-component Hunter-Saxton system (5.3) 104
5.4 Peakon solutions of the two-component Camassa-Holm system (5.4) 107
Chapter 6 Bifurcations and Exact Solutions of A Modulated Equation in A Discrete Nonlinear Electrical Transmission Line 111
6.1 Bifurcations of phase portraits of system (6.14) when f3(á) only has a positive zero 115
6.2 Dynamics and some exact parametric representations of the solutions of system (6.14) when f3(á) only has a positive zero 117
6.3 Bifurcations of phase portraits of system (6.14) when f3(á) has exact two positive zeros 123
6.4 Dynamics and some exact parametric representations of the solutions of system (6.14) when f3(á) has exact two positive zeros 126
Chapter 7 Exact Solutions and Dynamics of the Raman Soliton Model in Nanoscale Optical Waveguides, with Metamaterials, Having Polynomial Law Nonlinearity 129
7.1 Bifurcations of phase portraits of system (7.6) 132
7.2 Exact parametric representations of solutions of system (7.6) when there is only one equilibrium point for ˉ = 1; 2 and ˉ = .2;.3 136
7.3 Exact parametric representations of solutions of system (7.6) when there exist three equilibrium points for a0 > 0; ˉ = 1; 2 147
7.4 Exact parametric representations of solutions of system (7.6) when there exist three equilibrium points for a0 > 0; ˉ = .2;.3 163
7.5 Exact parametric representations of solutions of system (7.6) when there exist three equilibrium points for a0
Chapter 8 Quadratic and Cubic Nonlinear Oscillators with Damping and Their Applications 178
8.1 Exact solutions and dynamics of the integrable quadratic oscillator with damping 179
8.2 Exact solutions and dynamics of the integrable cubic nonlinear oscillator with damping 184
8.3 Exact traveling wave solutions of the van der Waals normal form (8.1) and the Cha.ee-Infante equation (8.4) 188
Chapter 9 Dynamics of Solutions of Some Travelling Wave Systems Determined by Integrable Li.enard System 191
9.1 The ˉrst integrals of Li.enard equation (9.4) under Chiellini's integrability condition 192
9.2 Dynamics of travelling wave solutions of a integrable generalized damped sine-Gordon equation (9.7) 194
9.3 Dynamics of travelling wave solutions of the integrable Burgers equation with one-side potential interaction (9.8) 199
Chapter 10 Bifurcations and Exact Solutions in A Model of Hydrogen-Bonded-Chains 204
10.1 Bifurcations of phase portraits of system (10.2) 206
10.2 The parametric representations of some orbits deˉned by system (10.2) for > 0; ˉp0 6= 0 208
10.3 The parametric representations of some orbits deˉned by system (10.2) for
10.4 The parametric representations of some orbits deˉned by system (10.2) for ˉp0 = 0 or ˉ
10.5 The parametric representations of some orbits intersecting transversely the singular straight line p = §p0 220
Chapter 11 Exact Solutions in Invariant Manifolds of Some Higher-Order Models Describing Nonlinear Waves 224 <>

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號