注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書科學(xué)技術(shù)工業(yè)技術(shù)自動(dòng)化技術(shù)、計(jì)算技術(shù)R數(shù)據(jù)挖掘入門

R數(shù)據(jù)挖掘入門

R數(shù)據(jù)挖掘入門

定 價(jià):¥45.00

作 者: [日] 山本義郎,藤野友和,久保田貴文 著,朱建春 譯
出版社: 人民郵電出版社
叢編項(xiàng): 圖靈程序設(shè)計(jì)叢書
標(biāo) 簽: 暫缺

ISBN: 9787115478788 出版時(shí)間: 2018-03-01 包裝: 平裝
開本: 大32開 頁(yè)數(shù): 198 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  本書使用R,結(jié)合大量實(shí)例,詳細(xì)介紹了數(shù)據(jù)挖掘的理論和分析方法。全書分為3部分:* 1部分簡(jiǎn)單介紹了使用R進(jìn)行數(shù)據(jù)挖掘的流程和數(shù)據(jù)挖掘的概要;* 2部分介紹了數(shù)據(jù)挖掘的10種常用方法,并在此基礎(chǔ)上使用R實(shí)際進(jìn)行數(shù)據(jù)挖掘;第3部分結(jié)合實(shí)際的數(shù)據(jù)挖掘事例介紹了如何使用這些方法。本書適合數(shù)據(jù)挖掘的初學(xué)者,以及正在從事數(shù)據(jù)分析相關(guān)工作,想了解更多分析方法的讀者閱讀。

作者簡(jiǎn)介

  山本義郎(作者)日本東海大學(xué)理學(xué)部數(shù)學(xué)系教授。著有《統(tǒng)計(jì)數(shù)據(jù)的可視化》《統(tǒng)計(jì)學(xué)序論》《概率統(tǒng)計(jì)序論 第 2版》(合著)。執(zhí)筆本書* 2章、第6章、第9章、* 11章、* 12章、* 13章。藤野友和(作者)日本福岡女子大學(xué)國(guó)際文理學(xué)部講師。著有《統(tǒng)計(jì)數(shù)據(jù)的可視化》(合著)。執(zhí)筆本書* 1章、第3章、第4章、第8章。久保田貴文(作者)日本多摩大學(xué)經(jīng)營(yíng)信息學(xué)部副教授。執(zhí)筆本書第5章、第7章、* 10章、* 14章。朱建春(譯者)畢業(yè)于北京大學(xué)計(jì)算機(jī)系,曾在聯(lián)想集團(tuán)任職多年,是國(guó)內(nèi)較早從事Windows掌上電腦和智能手機(jī)的系統(tǒng)和應(yīng)用軟件開發(fā)的IT工作者。后長(zhǎng)期擔(dān)任對(duì)日軟件外包開發(fā)項(xiàng)目經(jīng)理。

圖書目錄

第I部分 使用R進(jìn)行數(shù)據(jù)挖掘的準(zhǔn)備 1
* 1章 基于R的數(shù)據(jù)分析入門..............................................................3
1.1 R及RStudio的安裝..................................................................................4
1.2 RStudio的基本操作...................................................................................6
1.3 R語(yǔ)言入門.................................................................................................10
1.3.1 作為計(jì)算器使用的方法........................................................................10
1.3.2 向量——R的基本數(shù)據(jù)結(jié)構(gòu)................................................................11
1.3.3 向量變量的賦值和運(yùn)算........................................................................12
1.3.4 數(shù)組和矩陣.............................................................................................13
1.3.5 因子型.....................................................................................................15
1.3.6 列表.........................................................................................................16
1.3.7 數(shù)據(jù)框.....................................................................................................17
1.4 獲取外部數(shù)據(jù)............................................................................................18
1.5 數(shù)據(jù)匯總.....................................................................................................19
1.6 安裝程序包.................................................................................................21
1.7 基于dplyr程序包的數(shù)據(jù)框操作..........................................................22
1.8 數(shù)據(jù)的可視化............................................................................................25
1.8.1 柱狀圖.....................................................................................................26
1.8.2 直方圖.....................................................................................................29
1.8.3 箱形圖.....................................................................................................30
1.8.4 散點(diǎn)圖.....................................................................................................32
1.8.5 逐層繪制的圖.........................................................................................34
* 2章 數(shù)據(jù)挖掘概述..................................................................................36
2.1 大數(shù)據(jù)和數(shù)據(jù)挖掘...................................................................................36
2.2.1 業(yè)務(wù)理解(Business Understanding)..............................................37
2.2 CRISP-DM................................................................................................37
2.2.2 數(shù)據(jù)理解(Data Understanding).......................................................38
2.2.3 數(shù)據(jù)準(zhǔn)備(Data Preparation)............................................................38
2.2.4 建模(Modeling)..................................................................................39
2.2.5 評(píng)估(Evaluation)................................................................................39
2.2.6 運(yùn)用(Deployment).............................................................................39
2.3.1 數(shù)據(jù)的種類和建模................................................................................40
2.3 數(shù)據(jù)挖掘的方法........................................................................................40
2.3.2 預(yù)測(cè)和判別.............................................................................................41
2.3.3 分類和聚類.............................................................................................41
2.3.4 維規(guī)約.....................................................................................................41
2.3.5 規(guī)則發(fā)現(xiàn).................................................................................................41
第II部分 數(shù)據(jù)挖掘的方法 43
第3章 回歸分析............................................................................................45
3.1 一元回歸分析............................................................................................45
3.2 多元回歸分析............................................................................................50
第4章 Logistic回歸分析..........................................................................60
4.1 數(shù)據(jù)準(zhǔn)備.....................................................................................................60
4.2 使用一個(gè)解釋變量進(jìn)行預(yù)測(cè)..................................................................61
4.3 使用兩個(gè)及以上的解釋變量進(jìn)行預(yù)測(cè)................................................67
第5章 決策樹分析.......................................................................................71
5.1 使用分類樹的判別...................................................................................71
5.2 使用回歸樹的預(yù)測(cè)...................................................................................77
第6章 支持向量機(jī).......................................................................................81
6.1 支持向量機(jī)的概念...................................................................................81
6.2 類別預(yù)測(cè)的例子........................................................................................83
6.3 數(shù)值預(yù)測(cè)的例子........................................................................................86
第7章 記憶基礎(chǔ)推理..................................................................................89
7.1 k* 近鄰法的概念....................................................................................89
7.2 變量的基準(zhǔn)化和標(biāo)準(zhǔn)化..........................................................................94
第8章 聚類分析............................................................................................96
8.1 聚類分析的概念........................................................................................96
8.2 層次聚類分析............................................................................................97
8.3 執(zhí)行層次聚類分析...................................................................................99
8.4 可視化進(jìn)階...............................................................................................103
8.5 非層次聚類分析......................................................................................107
8.6 執(zhí)行非層次聚類分析.............................................................................107
第9章 自組織映射....................................................................................110
9.1 自組織映射的概念.................................................................................110
9.2 基于自組織映射的分析實(shí)例................................................................111
9.3 基于自組織映射的分類........................................................................120
* 10章 主成分分析.................................................................................129
10.1 主成分分析的概念...............................................................................129
10.2 對(duì)象數(shù)據(jù)的準(zhǔn)備...................................................................................132
10.3 執(zhí)行主成分分析...................................................................................135
* 11章 對(duì)應(yīng)分析......................................................................................141
11.1 對(duì)應(yīng)分析.................................................................................................141
11.2 多重對(duì)應(yīng)分析........................................................................................144
* 12章 關(guān)聯(lián)規(guī)則分析............................................................................149
12.1 關(guān)聯(lián)規(guī)則及其評(píng)價(jià)指標(biāo)......................................................................149
12.2 關(guān)聯(lián)規(guī)則分析的實(shí)例..........................................................................151
12.3 關(guān)聯(lián)規(guī)則分析的應(yīng)用實(shí)例..................................................................159
第III部分 數(shù)據(jù)挖掘?qū)崙?zhàn) 165
* 13章 對(duì)各種預(yù)測(cè)方法的評(píng)估........................................................167
13.1 關(guān)于預(yù)測(cè)方法的評(píng)估..........................................................................167
13.2 類別預(yù)測(cè)的判別方法的比較.............................................................168
13.2.1 Logistic回歸分析.............................................................................168
13.2.2 決策樹分析........................................................................................173
13.2.3 支持向量機(jī)........................................................................................175
13.3 數(shù)值預(yù)測(cè)方法的比較..........................................................................176
13.3.1 多元回歸分析....................................................................................176
13.3.2 決策樹分析........................................................................................178
13.3.3 支持向量機(jī)........................................................................................180
* 14章 用股價(jià)數(shù)據(jù)生成綜合指數(shù)...................................................181
14.1 獲取股價(jià)數(shù)據(jù)........................................................................................181
14.2 根據(jù)股價(jià)數(shù)據(jù)生成綜合指數(shù).............................................................183
* 15章 SNS數(shù)據(jù)的分析......................................................................189
15.1 微博API.................................................................................................189
15.2 通過(guò)R獲取微博信息.........................................................................192
15.3 分詞及詞頻統(tǒng)計(jì)...................................................................................195
15.4 詞云圖.....................................................................................................197

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)