注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當前位置: 首頁出版圖書科學技術(shù)自然科學數(shù)學線性代數(shù) Linear-Algebra:英文

線性代數(shù) Linear-Algebra:英文

線性代數(shù) Linear-Algebra:英文

定 價:¥42.80

作 者: 毛綱源,馬迎秋,梁敏 著
出版社: 華中科技大學出版社
叢編項: 普通高等教育“十三五”規(guī)劃教材、普通高等院校數(shù)學精品教材
標 簽: 教材 理學 研究生/本科/??平滩?/td>

購買這本書可以去


ISBN: 9787568028288 出版時間: 2017-12-01 包裝: 平裝
開本: 16開 頁數(shù): 280 字數(shù):  

內(nèi)容簡介

  本書采用學生易于接受的知識結(jié)構(gòu)方式和英語表述方式,科學、系統(tǒng)地介紹了線性代數(shù)的行列式、矩陣、高斯消元法解線性方程組、向量、方程組解的結(jié)構(gòu)、特征值和特征向量、二次型等知識。強調(diào)通用性和適用性,兼顧先進性。本書起點低,難度坡度適中,語言簡潔明了,不僅適用于課堂教學使用,同時也適用于自學自習。全書有關(guān)鍵詞索引,習題按小節(jié)配置,題量適中,題型全面,書后附有答案。本書讀者對象為高等院校理工、財經(jīng)、醫(yī)藥、農(nóng)林等專業(yè)大學生和教師,特別適合作為中外合作辦學的國際教育班的學生以及準備出國留學深造學子的參考書。

作者簡介

  毛綱源,武漢理工大學資深教授,畢業(yè)于武漢大學,留校任教,后調(diào)入武漢工業(yè)大學(現(xiàn)合并為武漢理工大學)擔任數(shù)學物理系系主任,在高校從事數(shù)學教學與科研工作40余年,除了出版多部專著(早在1998年,世界科技出版公司W(wǎng)orld Scientific Publishing Company就出版過他主編的線性代數(shù)Linear Algebra的英文教材)和發(fā)表數(shù)十篇專業(yè)論文外,還發(fā)表10余篇考研數(shù)學論文。主講微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計等課程。理論功底深厚,教學經(jīng)驗豐富,思維獨特。曾多次受邀在各地主講考研數(shù)學,得到學員的廣泛認可和一致好評:“知識淵博,講解深入淺出,易于接受”“解題方法靈活,技巧獨特,輔導針對性極強”“對考研數(shù)學的出題形式、考試重點難點了如指掌,上他的輔導班受益匪淺”。馬迎秋,北京師范大學珠海分校副教授,畢業(yè)于渤海大學,愛爾蘭都柏林大學數(shù)學碩士。主講微積分、線性代數(shù)、數(shù)學教學論、數(shù)學教學設計、數(shù)學史與數(shù)學文化等課程。在國內(nèi)外權(quán)wei期刊發(fā)表中英文論文10余篇。梁敏,北京師范大學珠海分校副教授,畢業(yè)于天津大學,美國托萊多大學數(shù)學碩士,美國羅格斯大學統(tǒng)計學碩士。主講微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計、商務統(tǒng)計、運籌學等課程。在國內(nèi)外權(quán)wei期刊發(fā)表中英文論文10余篇。

圖書目錄

Chapter 1 Determinant(1)
1.1 Definition of Determinant(1)
1.1.1 Determinant arising from the solution of linear system(1)
1.1.2 The definition of determinant of order n(5)
1.1.3 Determine the sign of each term in a determinant (8)
Exercise 1.1(10)
1.2 Basic Properties of Determinant and Its Applications(12)
1.2.1 Basic properties of determinant(12)
1.2.2 Applications of basic properties of determinant(15)
Exercise 1.2(19)
1.3 Expansion of Determinant (21)
1.3.1 Expanding a determinant using one row (column)(21)
1.3.2 Expanding a determinant along k rows (columns)(27)
Exercise 1.3(29)
1.4 Cramer’s Rule(30)
Exercise 1.4(36)

Chapter 2 Matrix(38)
2.1 Matrix Operations(38)
2.1.1 The concept of matrices(38)
2.1.2 Matrix Operations(41)
Exercise 2.1(58)
2.2 Some Special Matrices(60)
Exercise 2.2(64)
2.3 Partitioned Matrices(66)
Exercise 2.3(72)
2.4 The Inverse of Matrix(73)
2.4.1 Finding the inverse of an n×n matrix(73)
2.4.2 Application to economics(81)
2.4.3 Properties of inverse matrix (83)
2.4.4 The adjoint matrix A (or adjA) of A(86)
2.4.5 The inverse of block matrix(89)
Exercise 2.4(91)
2.5 Elementary Operations and Elementary Matrices(94)
2.5.1 Definitions and properties (94)
2.5.2 Application of elementary operations and elementary matrices(100)
Exercise2.5(102)
2.6 Rank of Matrix(103)
2.6.1 Concept of rank of a matrix(104)
2.6.2 Find the rank of matrix(107)
Exercise 2.6(109)

Chapter 3 Solving Linear System by Gaussian Elimination Method(110)
3.1 Solving Nonhomogeneous Linear System by Gaussian Elimination Method(110)
3.2 Solving Homogeneous Linear Systems by Gaussian Elimination Method(128)
Exercise 3(131)

Chapter 4 Vectors(134)
4.1 Vectors and its Linear Operations(134)
4.1.1 Vectors(134)
4.1.2 Linear operations of vectors(136)
4.1.3 A linear combination of vectors (137)
Exercise 4.1(143)
4.2 Linear Dependence of a Set of Vectors (143)
Exercise 4.2(155)
4.3 Rank of a Set of Vectors(156)
4.3.1 A maximal independent subset of a set of vectors(156)
4.3.2 Rank of a set of vectors(159)
Exercise 4.3(163)

Chapter 5 Structure of Solutions of a System(165)
5.1 Structure of Solutions of a System of Homogeneous Linear Equations (165)
5.1.1 Properties of solutions of a system of homogeneous linear equations(165)
5.1.2 A system of fundamental solutions (166)
5.1.3 General solution of homogeneous system(171)
5.1.4 Solutions of system of equations with given solutions of the system(173)
Exercise 5.1(176)
5.2 Structure of Solutions of a System of Nonhomogeneous Linear Equations(178)
5.2.1 Properties of solutions(178)
5.2.2 General solution of nonhomogeneous equations (179)
5.2.3 The simple and convenient method of finding the system of fundamental solutions and particular solution(183)
Exercise 5.2(189)

Chapter 6 Eigenvalues and Eigenvectors of Matrices(191)
6.1 Find the Eigenvalue and Eigenvector of Matrix(191)
Exercise 6.1(197)
6.2 The Proof of Problems Related with Eigenvalues and Eigenvectors(198)
Exercise 6.2(199)
6.3 Diagonalization(200)
6.3.1 Criterion of diagonalization(200)
6.3.2 Application of diagonalization(209)
Exercise 6.3(210)
6.4 The Properties of Similar Matrices(211)
Exercise 6.4(216)
6.5 Real Symmetric Matrices(218)
6.5.1 Scalar product of two vectors and its basis properties(218)
6.5.2 Orthogonal vector set(220)
6.5.3 Orthogonal matrix and its properties(223)
6.5.4 Properties of real symmetric matrix(225)
Exercise 6.5(229)

Chapter 7 Quadratic Forms (231)
7.1 Quadratic Forms and Their Standard Forms(231)
Exercise 7.1(236)
7.2 Classification of Quadratic Forms and Positive Definite Quadratic(Positive Definite Matrix)(237)
7.2.1 Classification of Quadratic Form(237)
7.2.2 Criterion of a positive definite matrix(239)
Exercise 7.2(241)
7.3 Criterion of Congruent Matrices(242)
Exercise 7.3(245)

Answers to Exercises(246)

Appendix Index(266)

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號