本書在Richard G. Lyons所著Understanding Digital Signal Processing, Second Edition的基礎(chǔ)上進(jìn)行了改編,針對通信類學(xué)校本科教學(xué)大綱,刪除了教學(xué)中一般不涉及的內(nèi)容,調(diào)整了章節(jié)順序,并增加了z反變換、濾波器結(jié)構(gòu)、線性相位FIR濾波器和其結(jié)構(gòu)、模擬濾波器簡介的內(nèi)容,使教內(nèi)容材更加完整。全書在概述了離散序列和系統(tǒng)的定義和實例之后,詳細(xì)討論了離散系統(tǒng)的特性、信號的離散化和離散卷積、z變換、離散時間傅里葉變換和離散傅里葉變換、快速傅里葉變換、數(shù)字濾波器結(jié)構(gòu)、以及有限和無限脈沖響應(yīng)數(shù)字濾波器的設(shè)計等基本概念和基本理論。書中涉及的數(shù)學(xué)知識以簡明形式給出,深入淺出,易于理解。本書每章都增加了例題、習(xí)題和MATLAB例題,以便加強(qiáng)對每章內(nèi)容的理解和掌握。
作者簡介
Richard G. Lyons畢業(yè)于美國加州阿克隆大學(xué),曾任美國國家安全局和TRW(天合)汽車集團(tuán)公司眾多DSP系統(tǒng)的首席硬件工程師,負(fù)責(zé)系統(tǒng)設(shè)計、開發(fā)、測試和安裝。曾任教于加利福尼亞大學(xué)塔克魯茲校區(qū),并發(fā)表過很多有關(guān)DSP的文章。作為IEEE Signal Processing Magazine的副主編,開設(shè)了DSP Tips & Tricks專欄并負(fù)責(zé)編輯。 Richard G. Lyons畢業(yè)于美國加州阿克隆大學(xué),曾任美國國家安全局和TRW(天合)汽車集團(tuán)公司眾多DSP系統(tǒng)的首席硬件工程師,負(fù)責(zé)系統(tǒng)設(shè)計、開發(fā)、測試和安裝。曾任教于加利福尼亞大學(xué)塔克魯茲校區(qū),并發(fā)表過很多有關(guān)DSP的文章。作為IEEE Signal Processing Magazine的副主編,開設(shè)了DSP Tips & Tricks專欄并負(fù)責(zé)編輯。
圖書目錄
Chapter 1 Discrete Sequences and Systems1 1.1 Discrete Sequences and Their Notation1 1.1.1 Discrete-time Signals2 1.1.2 Frequently Used Discrete Sequences7 1.2 Signal Amplitude, Magnitude, Power9 1.3 Signal Processing Operational Symbols10 1.4 Introduction to Discrete Linear Time-Invariant Systems12 1.5 Discrete Linear Systems12 1.5.1 Example of a Linear System12 1.5.2 Example of a Nonlinear System14 1.6 Time-Invariant Systems16 1.6.1 Example of a Time-Invariant System16 1.7 The Commutative Property of Linear Time-Invariant Systems17 1.8 The Causality Property of Linear Time-Invariant Systems18 1.9 The Stability Property of Linear Time-Invariant Systems18 1.10 Analyzing Linear Time-Invariant Systems19 1.11 Problems20 1.12 MATLAB Applications22 1.12.1 Applications22 1.12.2 Examples23 1.12.3 Exercises24 Chapter 2 Periodic Sampling25 2.1 Aliasing: Signal Ambiguity in the Frequency Domain25 2.2 Sampling Low-Pass Signals29 2.3 A Generic Description of Discrete Convolution32 2.3.1 Discrete Convolution in the Time Domain33 2.3.2 The Convolution Theorem36 2.3.3 Applying the Convolution Theorem39 2.4 Problems42 2.5 Matlab Applications43 2.5.1 Applications43 2.5.2 Examples44 2.5.3 Exercises46 Chapter 3 Z-Transform47 3.1 The z-Transform47 3.1.1 Poles and Zeros on the z-Plane and Stability49 3.1.2 The ROC of z-Transform50 3.1.3 The Properties of z-Transform53 3.2 The Inverse z-Transform55 3.2.1 General Expression of Inverse z-Transform55 3.2.2 Inverse z-Transform by Partial-Fraction Expansion58 3.3 Problems61 3.4 MATLAB Applications63 3.4.1 Applications63 3.4.2 Examples64 3.4.3 Exercises67 Chapter 4 The Discrete Fourier Transform68 4.1 Interpreting the DFT69 4.2 Understanding the DFT Equation71 4.2.1 DFT Example 174 4.3 DFT Properties81 4.3.1 DFT Symmetry81 4.3.2 DFT Linearity83 4.3.3 DFT Magnitudes83 4.3.4 DFT Frequency Axis84 4.3.5 DFT Shifting Theorem85 4.4 Inverse DFT87 4.5 DFT Leakage88 4.6 Windows94 4.7 DFT Resolution, Zero Padding, and Frequency-Domain Sampling101 4.8 Frequency Response104 4.9 Problems106 4.10 Matlab Applications107 4.10.1 Applications107 4.10.2 Examples108 4.10.3 Exercises111 Chapter 5 The Fast Fourier Transform112 5.1 Relationship of the FFT to the DFT112 5.2 FFT Alogrithm113 5.3 Derivation of the Radix-2 FFT Algorithm114 5.4 FFT Input/Output Data Index Bit Reversal120 5.5 Radix-2 FFT Butterfly Structures121 5.6 Efficiently Performing the FFT of Real Sequences127 5.6.1 Performing Two N-Point Real FFTs127 5.6.2 Performing a 2N-Point Real FFT133 5.7 Discrete Convolution using FFT137 5.7.1 Overlap-added138 5.7.2 Overlap-saved138 5.8 IFFT Algorithm140 5.9 Problems143 5.10 Matlab Applications144 5.10.1 Applications144 5.10.2 Examples144 5.10.3 Exercises146 Chapter 6 Filter Structure147 6.1 Block Structure147 6.2 Mason and Transpose Theorem149 6.2.1 Masons Rule149 6.2.2 Transpose Theorem150 6.3 Example of Filter Structures151 6.3.1 IIR Filter Structure151 6.3.2 FIR Direct Structure158 6.3.3 FIR Cascade Structure158 6.4 Problems159 6.5 Matlab Applications162 6.5.1 Applications162 6.5.2 Examples163 6.5.3 Exercises167 Chapter 7 Finite Impulse Response Filters168 7.1 An Introduction to Finite Impulse Response (FIR) Filters169 7.2 Properties of FIR Filters172 7.2.1 Convolution in FIR Filters172 7.2.2 Linear phase FIR Filter181 7.2.3 Linear Phase FIR Filter Structure188 7.2.4 FIR Filter Poles and Zeros194 7.3 Low-Pass FIR Filter Design196 7.3.1 Window Design Method197 7.3.2 Windows Used in FIR Filter Design204 7.3.3 Examples to Design Linear Phase Low-Pass FIR Filter210 7.4 Examples to Design Other Types Linear Phase FIR Filter215 7.5 Problems220 7.6 Matlab Exercises223 7.6.1 Applications223 7.6.2 Examples223 7.6.3 Exercises224 Chapter 8 Infinite Impulse Response Filters226 8.1 An Introduction to Infinite Impulse Response Filters227 8.2 The Laplace Transform229 8.2.1 Poles and Zeros on the s-Plane and Stability234 8.3 Analog Low-Pass Filters239 8.3.1 Introduction240 8.3.2 Approximation of analog filter characteristics240 8.3.3 Butterworth Approximation242 8.3.4 Chebyshev Approximation247 8.4 Impulse Invariance IIR Filter Design Method253 8.4.1 Impulse Invariance Design Method 1 Example258 8.4.2 Impulse Invariance Design Method 2 Example260 8.5 Bilinear Transform IIR Filter Design Method266 8.5.1 Bilinear Transform Design Example271 8.6 Low-Pass IIR Filter Design274 8.6.1 Example of Low-Pass IIR Digital Filter Design274 8.6.2 a Brief Comparison of IIR and FIR Filters277 8.7 Other Types IIR Filter Design278 8.8 Problems284 8.9 Matlab Exercises286 8.9.1 Functions of IIR Design 286 8.9.2 Examples287 8.9.3 Exercises288