注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)醫(yī)學(xué)神經(jīng)病學(xué)與精神病學(xué)Qualitative Analysis and Control of Complex Neu

Qualitative Analysis and Control of Complex Neu

Qualitative Analysis and Control of  Complex Neu

定 價(jià):¥150.00

作 者: 王占山,劉振偉,鄭成德
出版社: 科學(xué)出版社
叢編項(xiàng):
標(biāo) 簽: 暫缺

ISBN: 9787030452184 出版時(shí)間: 2015-08-01 包裝:
開本: 32開 頁數(shù): 404 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  《Qualitative Analysis and Control ofComplex Neural Networks with Delays》以復(fù)雜神經(jīng)網(wǎng)絡(luò)定性穩(wěn)定性研究為核心,并結(jié)合定量研究深入展開,形成容納復(fù)雜網(wǎng)絡(luò)和多智能體系統(tǒng)的動(dòng)態(tài)特性的研究脈絡(luò)?!禥ualitative Analysis and Control ofComplex Neural Networks with Delays》的特點(diǎn)是在動(dòng)力系統(tǒng)和穩(wěn)定性之間的關(guān)系上進(jìn)行了詳盡的闡述,傳統(tǒng)的動(dòng)力神經(jīng)網(wǎng)絡(luò)和當(dāng)下的復(fù)雜神經(jīng)網(wǎng)絡(luò)及多智能體之間的關(guān)系進(jìn)行闡述,揭示了大規(guī)模系統(tǒng)之間的演化關(guān)系。同時(shí),針對(duì)單穩(wěn)定性、多穩(wěn)定性、周期解和不變集等動(dòng)態(tài)特性進(jìn)行相互關(guān)系研究,并將所得到的結(jié)果用到動(dòng)力系統(tǒng)的同步性和一致性方面。結(jié)合動(dòng)力系統(tǒng)的這些特點(diǎn),將神經(jīng)網(wǎng)絡(luò)的動(dòng)態(tài)特性應(yīng)用到聯(lián)想記憶、模式識(shí)別、在線計(jì)算及進(jìn)化學(xué)習(xí)等方面具體的應(yīng)用方面,實(shí)現(xiàn)神經(jīng)網(wǎng)絡(luò)理論和實(shí)際問題的零距離結(jié)合

作者簡(jiǎn)介

暫缺《Qualitative Analysis and Control of Complex Neu》作者簡(jiǎn)介

圖書目錄

1  Introduction to Neural Networks
  1.1  Natural and Artificial Neural Networks
  1.2  Models of Computation
  1.3  Networks of Neurons
  1.4  Associative Memory Networks
  1.5  Hopfield Neural Networks
  1.6  Cohen-Grossberg Neural Networks
  1.7  Property of Neural Network
  1.8  Information Processing Capacity of Dynamical Systems
  1.9  Stability of Dynamical Neural Networks
  1.10  Delay Effects on Dynamical Neural Networks
  1.11  Features of LMI-Based Stability Results
  1.12  Summary
  References
2  Preliminaries on Dynamical Systems and Stability Theory
  2.1  Overview of Dynamical Systems
  2.2  Definition of Dynamical System and Its Qualitative Analysis
  2.3  Lyapunov Stability of Dynamical Systems
  2.4  Stability Theory
  2.5  Applications of Dynamical Systems Theory
  2.6  Notations and Discussions on Some Stability Problems
    2.6.1  Notations and Preliminaries
    2.6.2  Discussions on Some Stability Definitions
  2.7  Summary
  References
3  Survey of Dynamics of Cohen-Grossberg-Type RNNs
  3.1  Introduction
  3.2  Main Research Directions of Stability of RNNs
    3.2.1  Development of Neuronal Activation Functions
    3.2.2  Evolution of Uncertainties in Interconnection Matrix
    3.2.3  Evolution of Time Delays
    3.2.4  Relations Between Equilibrium and Activation Functions
    3.2.5  Different Construction Methods of Lyapunov Functions
    3.2.6  Expression Forms of Stability Criteria
    3.2.7  Domain of Attraction
    3.2.8  Different Kinds of Neural Network Models
  3.3  Stability Analysis for Cohen-Grossberg-Type RNNs
    3.3.1  Stability on Hopfield-Type RNNs
    3.3.2  Stability on Cohen-Grossberg-Type RNNs
    3.3.3  The Case with Nonnegative Equilibria
    3.3.4  Stability via M-Matrix or Algebraic Inequality Methods
    3.3.5  Stability via Matrix Inequalities or Mixed Methods
    3.3.6  Topics on Robust Stability of RNNs
    3.3.7  Other Topics on Stability Results of RNNs
    3.3.8  Qualitative Evaluation on the Stability Results of RNNs
  3.4  Necessary and Sufficient Conditions for RNNs
  3.5  Summary
  References
4  Delay-Partitioning-Method Based Stability Results for RNNs
  4.1  Introduction
  4.2  Problem Formulation
  4.3  GAS Criteria with Single Weighting-Delay
    4.3.1  Weighting-Delay-Independent Stability Criterion
    4.3.2  Weighting-Delay-Dependent Stability Criterion
  4.4  GAS Criteria with Multiple Weighting-Delays
  4.5  Implementation of Optimal Weighting-Delay Parameters
    4.5.1  The Single Weighting-Delay Case
    4.5.2  The Multiple Weighting-Delays Case
  4.6  Illustrative Examples
  4.7  Summary
  References
5  Stability Criteria for RNNs Based on Secondary Delay Partitioning
  5.1  Introduction
  5.2  Problem Formulation and Preliminaries
  5.3  Global Asymptotical Stability Result
  5.4  Illustrative Example
  5.5  Summary
  References
6  LMI-Based Stability Criteria for Static Neural Networks
  6.1  Introduction
  6.2  Problem Formulation
  6.3  Main Results
  6.4  Illustrative Example
  6.5  Summary
  References
7  Multiple Stability for Discontinuous RNNs
  7.1  Introduction
  7.2  Problem Formulations and Preliminaries
  7.3  Main Results
  7.4  Illustrative Examples
  7.5  Summary
  References
8  LMI-based Passivity Criteria for RNNs with Delays
  8.1  Introduction
  8.2  Problem Formulation
  8.3  Passivity for RNNs Without Uncertainty
  8.4  Passivity for RNNs with Uncertainty
  8.5  Illustrative Examples
  8.6  Summary
  References
9  Dissipativity and Invariant Sets for Neural Networks with Delay
  9.1  Delay-Dependent Dissipativity Conditions for Delayed RNNs
    9.1.1  Introduction
    9.1.2  Problem Formulation
    9.1.3  0-dissipativity Result
  9.2  Positive Invariant Sets and Attractive Sets of DNN
    9.2.1  Introduction
    9.2.2  Problem Formulation and Preliminaries
    9.2.3  Invariant Set Results
  9.3  Attracting and Invariant Sets of CGNN with Delays
    9.3.1  Introduction
    9.3.2  Problem Formulation and Preliminaries
    9.3.3  Invariant Set Result
  9.4  Summary
  References
10  Synchronization Stability in Complex Neural Networks
  10.1  Introduction
  10.2  Problem Formulation and Preliminaries
  10.3  Synchronization Results
  10.4  Illustrative Example
  10.5  Summary
  References
11  Stabilization of Stochastic RNNs with Stochastic Delays
  11.1  Introduction
  11.2  Problem Formulation and Preliminaries
  11.3  Stabilization Result
  11.4  Illustrative Examples
  11.5  Summary
  References
12  Adaptive Synchronization of Complex Neural Networks
  12.1  Introduction
  12.2  Problem Formulation and Preliminaries
  12.3  Adaptive Synchronization Scheme
  12.4  Illustrative Example
  12.5  Summary
  References
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)