第一章 引論(Introduction) 1.1 我們周圍的數(shù)字系統(tǒng)(Digital Systems around Us) 1.2 數(shù)字系統(tǒng)的世界(World of Digital Systems) 1.3 實(shí)現(xiàn)數(shù)字系統(tǒng)的方法(Implementing Digital Systems) 1.4 數(shù)字系統(tǒng)設(shè)計(Digital System Design) 本章小結(jié)(Brief Summary ofthis Chapter) 思考題和習(xí)題(Problems and Exercises) 第二章 信息的二進(jìn)制表達(dá)(Binary Expression of Information) 2.1 引言(Introduction) 2.2 數(shù)字的二進(jìn)制表達(dá)(Binary Expression of Numbers) 2.2.1 按位計數(shù)制(Positional Number Systems) 2.2.2 數(shù)字的二進(jìn)制表達(dá)(Binary Expression of Number) 2.2.3 二進(jìn)制縮寫表達(dá):八進(jìn)制和十六進(jìn)制(Abbreviation Expression of Binary Numbers:Octal and Hexadecimal Numbers) 2.2.4 二進(jìn)制與十進(jìn)制的轉(zhuǎn)換(Binary and Decimal Number-System Conversions) 2.3 二進(jìn)制數(shù)的算數(shù)運(yùn)算(Arithmetic Operation of Binary Numbers) 2.3.1 數(shù)字系統(tǒng)中的無符號數(shù)(Unsigned Number of Digital System) 2.3.2 加法運(yùn)算與乘法運(yùn)算(Addition and Multiplication) 2.3.3 符號數(shù)的表達(dá)(Representation of Signed-Numbers) 2.3.4 不同表達(dá)方式之間的轉(zhuǎn)換(Conversion of Difierent Expressions) 2.3.5 符號數(shù)的運(yùn)算規(guī)則(Operational Rules of Signed Number) 2.3.6 定點(diǎn)數(shù)和浮點(diǎn)數(shù)的表示(Representation of Fixed Point Numbers and Floating Point Numbers) 2.4 信息的二進(jìn)制編碼(Binary Codes of Information) 2.4.1 一般字符與狀態(tài)編碼(Codes for General Character and State) 2.4.2 ASCⅡ編碼(ASCⅡ Code) 2.4.3 十進(jìn)制數(shù)的二進(jìn)制編碼(Binary Codes for Decimal Number) 2.4.4 獨(dú)熱碼(One-hot Code) 2.4.5 格雷碼(Gray Code) 2.4.6 檢錯和糾錯編碼(Codes for Detecting and Correcting Errors) 本章小結(jié) (Brief Summary of this Chapter) 思考題和習(xí)題(Problems and Exercises) 第三章 邏輯代數(shù)基礎(chǔ)(Basis of Logic Algebra) 3.1 引言(Introduction) 3.2 基本邏輯系統(tǒng)表達(dá)(Expression of Basic Logic System) 3.2.1 邏輯代數(shù)中的三種基本運(yùn)算(Three Basic Operations in Boolean Algebra) 3.2.2 幾種導(dǎo)出的邏輯運(yùn)算(Several Educed Logic Operation) 3.2.3 IEEE邏輯符號(IEEE Logic Symbols) 3.3 邏輯代數(shù)的公理和定理(Axioms and Theorems in Logic Algebra) 3.3.1 公理(Axioms) 3.3.2 單變量定理(Single Variable 7heorems) 3.3.3 二變量和三變量的定理(Two-and Three-Variable Theorems) 3.3.4 n變量定理(n-Variable Theorems) 3.3.5 異或、同或運(yùn)算的定理(Theorems of XOR and XNOR Operations) 3.3.6 代入定理(Substitution mheorem) 3.3.7 反演定理(Complement Theorem) 3.4 正負(fù)邏輯與對偶定理(Positive and Negative Logic and Duality Theorems) 3.4.1 正負(fù)邏輯(Positive and Negative Logic) 3.4.2 對偶定理(Duality Theorem) 3.4.3 信號名和有效電平(Signal Names and Active Levels) 3.5 香農(nóng)展開定理與標(biāo)準(zhǔn)邏輯運(yùn)算(Shannon‘s Expansion Theorems and Canonical Forms of Logic Function) 3.5.1 香農(nóng)展開定理(Shannon’s Expansion Theorems) 3.5.2 真值表的標(biāo)準(zhǔn)邏輯表達(dá)(Standard Logic Expression of Truth Table) 3.5.3 最小項與最大項(Minterm and Maxterm) 3.5.4 邏輯函數(shù)的標(biāo)準(zhǔn)形式(Canonical Form of Logic Function) 3.5.5 最小項和最大項之間的關(guān)系(Relation ship of Minterm and Maxterm) 3.6 邏輯函數(shù)的表示方法(Expression Methods of Logic Functions) 3.6.1 邏輯函數(shù)的幾種常用表示方法(Popular Expression Methods of Logic Function) 3.6.2 幾種表示方法間的相互轉(zhuǎn)換(Interconversion of Difierent Expressive Methods) 3.7 邏輯函數(shù)的化簡(Simplification of Logic Functions) 3.7.1 邏輯函數(shù)的最簡形式(Minimization Forms of Logic Functions) 3.7.2 利用邏輯代數(shù)公式化簡(Minimization with Logic Algebra Equations) 3.7.3 卡諾圖法化簡邏輯函數(shù)(Minimization with Kamaugh Map) 3.7.4 具有無關(guān)項的邏輯函數(shù)及其化簡(Minimization of Logic Function with Don‘t Care Terms) 3.7.5 多輸出函數(shù)的化簡(Minimization of Multi-Outputs Function) …… 第四章 邏輯門電路(Logic Gates Circuits) 第五章 組合邏輯電路設(shè)計(Combinational Logic Circuit Design) 第六章 存儲電路(Memory Circuits) 第七章 時序邏輯電路設(shè)計(Sequential Logic Circuit Design) 第八章 大規(guī)模半導(dǎo)體存儲器和可編程邏輯器件(VLSI Semiconductor Memory And Programmable Logic Devices) 第九章 數(shù)模和模數(shù)轉(zhuǎn)換器(DAC and ADC) 第十章 現(xiàn)代數(shù)字系統(tǒng)設(shè)計(Modem Digital System Design) 習(xí)題參考譯文