注冊 | 登錄讀書好,好讀書,讀好書!
讀書網-DuShu.com
當前位置: 首頁出版圖書科學技術計算機/網絡軟件工程及軟件方法學MATLAB優(yōu)化算法案例分析與應用(進階篇)

MATLAB優(yōu)化算法案例分析與應用(進階篇)

MATLAB優(yōu)化算法案例分析與應用(進階篇)

定 價:¥79.80

作 者: 余勝威
出版社: 清華大學出版社
叢編項:
標 簽: 暫缺

購買這本書可以去


ISBN: 9787302397014 出版時間: 2015-05-01 包裝:
開本: 16開 頁數: 540 字數:  

內容簡介

  《MATLAB優(yōu)化算法案例分析與應用(進階篇)》是深受廣大讀者歡迎的《MATLAB優(yōu)化算法案例分析與應用》一書的姊妹篇,即進階篇。本書全面、系統(tǒng)、深入地介紹了MATLAB算法及案例應用。書中結合算法分析的理論和流程,詳解了大量的工程案例及其具體的代碼實現,讓讀者可以深入學習和掌握各種算法在相關領域中的具體應用。本書共分兩篇。第1篇為MATLAB常用算法應用設計,包括貝葉斯分類器的數據處理、背景差分的運動目標檢測、小波變換的圖像壓縮、BP的模型優(yōu)化預測、RLS算法的數據預測、GA優(yōu)化的BP網絡算法分析、分形維數應用、碳排放約束下的煤炭消費量優(yōu)化預測、焊縫邊緣檢測算法對比分析、指紋圖像細節(jié)特征提取、多元回歸模型的礦井通風量計算、非線性多混合擬合模型的植被過濾帶計算、伊藤微分方程的布朗運動分析、Q學習的無線體域網路由方法和遺傳算法的公交排班系統(tǒng)分析。第2篇為MATLAB高級算法應用設計,包括人臉檢測識別、改進的多算子融合圖像識別系統(tǒng)設計、罰函數的粒子群算法的函數尋優(yōu)、車載自組織網絡中路邊性能及防碰撞算法研究、免疫算法的數值逼近優(yōu)化分析、啟發(fā)式算法的函數優(yōu)化分析、一級倒立擺變結構控制系統(tǒng)設計與仿真研究、蟻群算法的函數優(yōu)化分析、引力搜索算法的函數優(yōu)化分析、細菌覓食算法的函數優(yōu)化分析、匈牙利算法的指派問題優(yōu)化分析、人工蜂群算法的函數優(yōu)化分析、改進的遺傳算法的城市交通信號優(yōu)化分析、差分進化算法的函數優(yōu)化分析和魚群算法的函數優(yōu)化分析?!禡ATLAB優(yōu)化算法案例分析與應用(進階篇)》既適合所有想全面學習MATALB算法開發(fā)的人員閱讀,也適合各種使用MATALB進行開發(fā)的工程技術人員閱讀。對于相關高校的教學與研究,本書也是不可或缺的參考書。另外,對于MATLAB愛好者,本書也對網絡上討論的大部分疑難問題給出了解答,值得一讀。本書涵蓋的內容基于貝葉斯分類器的數據處理與MATLAB實現基于背景差分的運動目標檢測與MATLAB實現基于小波變換的圖像壓縮與MATLAB實現基于BP的模型優(yōu)化預測與MATLAB實現基于RLS算法的數據預測與MATLAB實現基于GA優(yōu)化的BP網絡算法分析與MATLAB實現分形維數應用與MATLAB實現碳排放約束下的煤炭消費量優(yōu)化預測焊縫邊緣檢測算法對比分析與MATLAB實現指紋圖像細節(jié)特征提取與MATLAB實現基于多元回歸模型的礦井通風量計算基于非線性多混合擬合模型的植被過濾帶計算基于伊藤微分方程的布朗運動分析基于Q學習的無線體域網路由方法基于遺傳算法的公交排班系統(tǒng)分析人臉檢測識別與MATLAB實現基于改進的多算子融合的圖像識別系統(tǒng)設計基于罰函數的粒子群算法的函數尋優(yōu)車載自組織網絡中路邊性能及防碰撞算法研究基于免疫算法的數值逼近優(yōu)化分析基于啟發(fā)式算法的函數優(yōu)化分析一級倒立擺變結構控制系統(tǒng)設計與仿真研究基于蟻群算法的函數優(yōu)化分析基于引力搜索算法的函數優(yōu)化分析基于細菌覓食算法的函數優(yōu)化分析基于匈牙利算法的指派問題優(yōu)化分析基于人工蜂群算法的函數優(yōu)化分析基于改進的遺傳算法的城市交通信號優(yōu)化分析基于差分進化算法的函數優(yōu)化分析基于魚群算法的函數優(yōu)化分析

作者簡介

  余勝威,畢業(yè)于西南交通大學。有6年以上的MATLAB應用經驗,精通MATLAB算法開發(fā),對程序設計有獨到的見解。榮獲省級、國家級數學建模競賽一等獎4項、二等獎3項、優(yōu)秀獎1項,還獲得了編程和其他類競賽獎4項。已錄用論文3篇,參與項目10余個,獨立編寫了5部MATLAB應用領域的圖書。目前主要從事圖像處理、人工智能、信號分析、故障診斷和算法開發(fā)等相關方面的研究。

圖書目錄

第1篇  MATLAB常用算法應用設計
第1章  基于貝葉斯分類器的數據處理與MATLAB實現
1.1  貝葉斯理論
1.2  高斯概率密度函數
1.3  最小距離分類器
1.3.1  歐氏距離分類器
1.3.2  馬氏距離分類器
1.3.3  基于高斯概率密度函數的最大似然估計
1.4  混合概率分布
1.5  期望最大化算法
1.6  Parzen窗
1.7  K最近鄰密度估計法
1.8  樸素貝葉斯分類器
1.9  最近鄰分類原則
1.10  本章小結
第2章  基于背景差分的運動目標檢測與MATLAB實現
2.1  運動目標檢測的一般過程
2.1.1  手動背景法
2.1.2  統(tǒng)計中值法
2.1.3  算術平均法
2.2  運動目標檢測的一般方法
2.2.1  幀間差法運動目標檢測
2.2.2  背景差法運動目標檢測
2.3  本章小結
第3章  基于小波變換的圖像壓縮與MATLAB實現
3.1  小波變換原理
3.2  多尺度分析
3.3  圖像的分解和量化
3.3.1  一維小波變換
3.3.2  二維變換體系
3.3.3  量化
3.4  圖像壓縮編碼
3.4.1  圖像編碼評價
3.4.2  壓縮比準則
3.5  圖像壓縮與MATLAB實現
3.6  本章小結
第4章  基于BP的模型優(yōu)化預測與MATLAB實現
4.1  BP神經網絡模型及其基本原理
4.2  MATLAB BP神經網絡工具箱
4.3  基于BP神經網絡的PID參數整定
4.3.1  理論分析
4.3.2  算法流程
4.3.3  算法仿真
4.4  基于BP神經網絡的數字識別系統(tǒng)設計
4.5  本章小結
第5章  基于RLS算法的數據預測與MATLAB實現
5.1  遞歸最小二乘(RLS)算法應用背景
5.2  RLS算法基本原理與流程
5.2.1  RLS算法基本原理
5.2.2  RLS算法流程
5.3  RLS數據線性預測分析與MATLAB實現
5.4  本章小結
第6章  基于GA優(yōu)化的BP網絡算法分析與MATLAB實現
6.1  遺傳算法
6.2  BP神經網絡
6.3  基于GA優(yōu)化的BP神經網絡的大腦灰白質圖像分割
6.4  基于GA優(yōu)化的BP神經網絡的礦井通風量計算
6.4.1  某工作面最優(yōu)通風量分析
6.4.2  總回風巷最優(yōu)通風量分析
6.5  本章小結
第7章  分形維數應用與MATLAB實現
7.1  分形盒維數概述
7.2  二維圖像分形盒維數分析
7.3  基于短時分形維數的語音信號檢測
7.3.1  時間序列信號圖形的網格分形
7.3.2  噪聲語音信號的短時網格分形
7.4  本章小結
第8章  碳排放約束下的煤炭消費量優(yōu)化預測
8.1  煤炭消費量概述
8.2  煤炭影響因素分析
8.3  煤炭消耗量優(yōu)化預測模型構建
8.3.1  CO2排放強度的雙立方插值擬合
8.3.2  煤炭、石油和天然氣與CO2排放強度回歸模型構建
8.3.3  煤炭、石油和天然氣碳排放系數構建
8.3.4  節(jié)能減排和經濟發(fā)展優(yōu)化目標構建與求解
8.4  本章小結
第9章  焊縫邊緣檢測算法對比分析與MATLAB實現
9.1  焊縫邊緣檢測研究
9.2  圖像預處理技術
9.3  焊縫圖像邊緣檢測
9.3.1  Sobel算子
9.3.2  Prewitt算子
9.3.3  Canny算子
9.3.4  形態(tài)學處理
9.3.5  邊緣檢測效果對比
9.4  本章小結
第10章  指紋圖像細節(jié)特征提取與MATLAB實現
10.1  指紋識別技術概述
10.2  指紋識別系統(tǒng)的工作原理
10.3  指紋細節(jié)特征的提取
10.3.1  指紋特征提取的方法
10.3.2  指紋圖像的細化后處理
10.3.3  特征點的提取
10.3.4  指紋特征的去偽
10.4  指紋圖像去偽與MATLAB實現
10.5  本章小結
第11章  基于多元回歸模型的礦井通風量計算
11.1  礦井通風量概述
11.2  礦井通風量回歸模型分析
11.3  通風量多元回歸分析
11.3.1  數據的預處理
11.3.2  瓦斯、煤塵、溫度、濕度與通風量模型的建立
11.4  礦井最優(yōu)通風風量有效性分析
11.4.1  空氣中煤塵濃度與風速映射關系建模
11.4.2  空氣中瓦斯?jié)舛扰c風速映射關系建模
11.4.3  礦井中溫濕度與風速映射關系建模
11.5  預測模型誤差檢驗
11.6  本章小結
第12章  基于非線性多混合擬合模型的植被過濾帶計算
12.1  植被試驗場概況
12.2  試驗方法
12.2.1  試驗參數
12.2.2  土樣的分析方法
12.2.3  水樣的分析方法
12.3  植被過濾帶凈化效果評價方法
12.4  植被過濾帶凈化效果影響因素分析
12.4.1  植被條件對植被過濾帶凈化效果的影響
12.4.2  入流水文條件對植被過濾帶凈化效果的影響
12.4.3  帶寬對植被過濾帶凈化效果的影響
12.4.4  坡度對植被過濾帶凈化效果的影響
12.4.5  入流污染物濃度對植被過濾帶凈化效果的影響
12.4.6  土壤初始含水量對植被過濾帶凈化效果的影響
12.5  植被過濾帶凈化效果關聯(lián)度計算
12.6  基于非線性多混合擬合模型的濃度削減率計算
12.7  本章小結
第13章  基于伊藤微分方程的布朗運動分析
13.1  隨機微分方程數學模型
13.1.1  布朗運動概述
13.1.2  布朗運動的數學模型
13.2  布朗運動的隨機微分方程
13.2.1  隨機微分方程
13.2.2  隨機微分方程系數
13.3  伊藤微分方程及伊藤微分法則
13.3.1  伊藤微分方程
13.3.2  伊藤積分
13.3.3  伊藤過程
13.3.4  伊藤隨機微分方程的解析解
13.3.5  伊藤隨機微分方程的數值解
13.4  數值布朗運動模擬與MATLAB實現
13.4.1  布朗運動的模擬
13.4.2  幾何布朗運動的模擬
13.4.3  伊藤微分方程的布朗運動模擬
13.5  本章小結
第14章  基于Q學習的無線體域網路由方法
14.1  無線體域網研究背景
14.2  無線體域網性能分析
14.2.1  無線體域網系統(tǒng)結構
14.2.2  無線體域網的主要特點
14.3  無線體域網路由協(xié)議
14.3.1  無線路由協(xié)議
14.3.2  高效節(jié)能路由協(xié)議
14.3.3  DSR路由協(xié)議
14.4  基于Q學習的無線體域網路由方法
14.4.1  Agent增強學習算法
14.4.2  增強學習算法的基本原理
14.4.3  Q-learning增強學習算法
14.4.4  基于Q學習的無線體域網路由策略
14.4.5  WBAN路由分析與MATLAB實現
14.5  本章小結
第15章  基于遺傳算法的公交排班系統(tǒng)分析
15.1  公交排班系統(tǒng)背景分析
15.2  公交線路模型仿真
15.2.1  車輛行駛模型
15.2.2  乘客上下車模型
15.3  遺傳算法的發(fā)展與現狀
15.4  遺傳算法的基本思想
15.5  遺傳算法的特點
15.6  遺傳算法的應用步驟
15.7  公交排班問題模型設計
15.7.1  模型假設
15.7.2  定義變量
15.7.3  建立目標函數
15.7.4  算法結構
15.8  本章小結
第16章  人臉檢測識別與MATLAB實現
16.1  人臉檢測的意義
16.2  人臉檢測常用的幾個彩色空間
16.2.1  RGB彩色空間
16.2.2  標準化RGB彩色空間
16.2.3  HSV彩色空間
16.2.4  YCrCb彩色空間
16.3  靜態(tài)膚色模型
16.3.1  RGB顏色空間分割
16.3.2  HSV顏色空間分割
16.3.3  YCbCr顏色空間分割
16.4  基于Lab顏色空間的人臉分割
16.5  運動人圖像檢測與MATLAB實現
16.6  本章小結
第2篇  MATLAB高級算法應用設計
第18章  基于罰函數的粒子群算法的函數尋優(yōu)
第19章  車載自組織網絡中路邊性能及防碰撞算法研究
第20章  基于免疫算法的數值逼近優(yōu)化分析
第21章  基于啟發(fā)式算法的函數優(yōu)化分析
第22章  一級倒立擺變結構控制系統(tǒng)的設計與仿真研究
第23章  基于蟻群算法的函數優(yōu)化分析
第24章  基于引力搜索算法的函數優(yōu)化分析
第25章  基于細菌覓食算法的函數優(yōu)化分析
第26章  基于匈牙利算法的指派問題優(yōu)化分析
第27章  基于人工蜂群算法的函數優(yōu)化分析
第28章  基于改進的遺傳算法的城市交通信號優(yōu)化分析
第29章  基于差分進化算法的函數優(yōu)化分析
第30章  基于魚群算法的函數優(yōu)化分析
參考文獻

本目錄推薦

掃描二維碼
Copyright ? 讀書網 m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網安備 42010302001612號