注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)生物科學(xué)隨機(jī)年齡結(jié)構(gòu)種群系統(tǒng)(英文版)

隨機(jī)年齡結(jié)構(gòu)種群系統(tǒng)(英文版)

隨機(jī)年齡結(jié)構(gòu)種群系統(tǒng)(英文版)

定 價(jià):¥78.00

作 者: 張啟敏,李西寧,岳紅格 著
出版社: 科學(xué)出版社
叢編項(xiàng): 生物數(shù)學(xué)叢書
標(biāo) 簽: 科學(xué)與自然 生物科學(xué)

ISBN: 9787030389206 出版時(shí)間: 2013-11-01 包裝: 平裝
開本: 5開 頁數(shù): 244 字?jǐn)?shù):  

內(nèi)容簡介

  以隨機(jī)擾動(dòng)項(xiàng)分別為Browan運(yùn)動(dòng)、分?jǐn)?shù)Brown運(yùn)動(dòng)、Markovian過程和Poisson過程為主線,對(duì)種群模型進(jìn)行數(shù)值計(jì)算理論的研究;主要針對(duì)年齡相關(guān)的種群模型、年齡相關(guān)擴(kuò)散的種群模型和神經(jīng)網(wǎng)絡(luò)模型開展數(shù)值方法研究。采用Euler和半隱式Euler等數(shù)值方法,研究年齡相關(guān)隨機(jī)種群模型數(shù)值計(jì)算方法,給出數(shù)值解收斂和指數(shù)穩(wěn)定的充分條件,并通過大量的數(shù)值算例驗(yàn)證算法的有效性。為隨機(jī)種群發(fā)展系統(tǒng)求解構(gòu)造出穩(wěn)定的求解算法。主要包括四部分內(nèi)容,一、預(yù)備知識(shí);二、年齡相關(guān)隨機(jī)種群模型解的存在性和唯一性;三、年齡相關(guān)隨機(jī)種群模型的數(shù)值計(jì)算;四、隨機(jī)神經(jīng)網(wǎng)絡(luò)模型的數(shù)值計(jì)算。《隨機(jī)年齡結(jié)構(gòu)種群系統(tǒng)(英文版)/生物數(shù)學(xué)叢書》的內(nèi)容全部是最新研究成果。

作者簡介

暫缺《隨機(jī)年齡結(jié)構(gòu)種群系統(tǒng)(英文版)》作者簡介

圖書目錄

Preface
Chapter  1  Introduction
1.1   Introduction
1.2   Basic notations of probability theory
1.3   Stochastic processes
1.4   Brownian motions
1.5   Stochastic integrals
1.6   It?o’s formula
1.7   Moment inequalities
1.8   Gronwall-type inequalities
Chapter  2  Existence, uniqueness and exponential  stability  for stochastic age-dependent population
2.1   Introduction
2.2   Assumptions and preliminaries
2.3   Existence and uniqueness of solutions
2.3.1   Uniqueness of solutions
2.3.2   Existence of strong solutions
2.4   Stability of strong solutions
Chapter  3  Existence and uniqueness for stochastic age-structured population  system with  diffusion
3.1   Introduction
3.2   Euler approximation and main result
3.3   Existence and uniqueness of solutions
3.3.1   Uniqueness of solutions
3.3.2   Existence of strong solutions
3.4   Numerical simulation example
Chapter  4  Existence and uniqueness for stochastic age-dependent population  with  fractional  Brownian  motion
4.1   Introduction
4.2   Preliminaries
viii  Contents
4.3   Existence and uniqueness of solutions
Chapter  5  Convergence of the Euler  scheme for stochastic functional partial  differential  equations
5.1   Introduction
5.2   Preliminaries and the Euler approximation
5.3   The main results
5.4   Numerical simulation example
Chapter  6  Numerical analysis for stochastic age-dependent
population  equations
6.1   Introduction
6.2   Preliminaries and the Euler approximation
6.3   The main results
Chapter  7  Convergence of numerical  solutions to stochastic
age-structured  population  system with  diffusion
7.1   Introduction
7.2   Preliminaries and approximation
7.3   The main results
7.4   Numerical simulation example
Chapter  8  Exponential  stability  of numerical  solutions to a stochas-
tic age-structured  population  system with  diffusion
8.1   Introduction
8.2   Preliminaries and Euler approximation
8.3   The main results
8.4   Numerical simulation example
Chapter  9  Numerical analysis for stochastic age-dependent popula-
tion equations with  fractional  Brownian  motion
9.1   Introduction
9.2   Preliminaries and the Euler approximation
9.3   The main results
9.4   Numerical simulation example
Chapter  10  Convergence of the semi-implicit  Euler  method for stochastic age-dependent population  equations with Markovian switching
10.1  Introduction
10.2  Preliminaries and semi-implicit approximation
10.3  Several lemmas
Contents ix
10.4  Main results
Chapter  11  Convergence of numerical  solutions to stochastic
age-dependent population  equations with  Poisson jump and Markovian switching
11.1  Introduction
11.2  Preliminaries and semi-implicit approximation
11.3  Several lemmas
11.4  Main results
Chapter  12  Numerical analysis for stochastic delay neural networks with Poisson jump
12.1  Introduction
12.2  Preliminaries and the Euler approximation
12.3  The main results
12.4  Numerical simulation example
Chapter  13  Convergence of numerical  solutions to stochastic delay neural networks with  Poisson jump and Markov
switching
13.1  Introduction
13.2  Preliminaries and the Euler approximation
13.3  Lemmas and corollaries
13.4  Convergence with the local Lipschitz condition
Chapter  14  Exponential  stability  of numerical  solutions to a
stochastic delay neural networks
14.1  Introduction
14.2  Preliminaries and approximation
14.3  Lemmas
14.4  Numerical simulation example
Bibliography
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)