注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)物理學(xué)非線性超分辨納米光學(xué)及應(yīng)用(英文版)

非線性超分辨納米光學(xué)及應(yīng)用(英文版)

非線性超分辨納米光學(xué)及應(yīng)用(英文版)

定 價(jià):¥120.00

作 者: Jingsong Wei 著
出版社: 科學(xué)出版社
叢編項(xiàng):
標(biāo) 簽: 光學(xué) 物理學(xué) 自然科學(xué)

ISBN: 9787030419484 出版時(shí)間: 2015-01-01 包裝: 精裝
開本: 16開 頁數(shù): 256 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

隨著光電子信息技術(shù)、納米科技和生物生命科學(xué)的發(fā)展,要求光學(xué)成像或光刻的分辨率達(dá)到亞波長(zhǎng)甚至納米尺度。然而,由于受到阿貝衍射極限的制約,無論是光刻的特征線寬、光盤存儲(chǔ)器件的最小記錄點(diǎn)尺寸、還是光學(xué)圖像的分辨率,按照傳統(tǒng)的衍射光學(xué)理論很難突破半波極限。對(duì)此,科研人員提出了各種方法和手段來挑戰(zhàn)半波極限,實(shí)現(xiàn)納米尺度的光學(xué)分辨率?!斗蔷€性超分辨納米光學(xué)及應(yīng)用(英文版)》首先分析和介紹了目前突破光學(xué)衍射極限的常見方法的原理和實(shí)驗(yàn)方案,然后聚焦于利用薄膜材料(特別是半導(dǎo)體薄膜)光學(xué)非線性效應(yīng)來突破阿貝衍射極限。從薄膜材料非線性折射和吸收的表征方法出發(fā),分析半導(dǎo)體薄膜以及金屬摻雜半導(dǎo)體薄膜的非線性吸收和折射特性。

作者簡(jiǎn)介

暫缺《非線性超分辨納米光學(xué)及應(yīng)用(英文版)》作者簡(jiǎn)介

圖書目錄

1 GeneralMethodsforObtainingNanoscaleLightSpot
1.1 Introduction
1.2 Near-Field Scanning Probe Method
1.2.1 Aperture-Type Probe
1.2.2 Apertureless-Type Metal Probe
1.2.3 Tip-on-Aperture-Type Probe
1.2.4 C-Aperture Encircled by Surface Corrugations on a Metal Film
1.2.5 Nonlinear Self-focusing Probe
1.3 Solid Immersion Lens Method
1.4 Surface Plasmonic Lens
1.5 Stimulated Emission Depletion Fluorescence Microscope Methods
References

2 Third-Order Nonlinear Effects
2.1 Introduction
2.2 Nonlinear Refraction
2.3 NonlinearAbsorption
References

3 Characterization Methods for Nonlinear Absorption and Refraction Coefficients
3.1 Introduction
3.2 Theory and Setup ofBasic Z-scan Method
3.2.1 Description ofBasic Principle
3.2.2 DataAnalysis for Z-scan Curves
3.3 Generation and Elimination of Pseudo-nonlinearity in z-scan Measurement
3.3.1 IncidentAngle as a Function ofZ-scan Position
3.3.2 Dependence of Transmittance on Incident and Polarization Azimuth Angles
3.3.3 Incident Angle Change-Induced Pseudo-nonlinear Absorption
3.3.4 Calculated Pseudo-nonlinear Absorption Curves
3.3.5 Reduction or Elimination of Pseudo-nonlinear Absorption
3.4 Eliminating the Influence from Reflection Loss on z-scan Measurement
3.4.1 Fresnel Reflection Loss in the z-scan Measurement
3.4.2 The Case of Thin Samples
3.4.3 The Case of Nanofilm Samples
3.5 Influence of Feedback Light on z-scan Measurement
3.5.1 Influence of Feedback Light on Semiconductor Laser Devices
3.5.2 Elimination of Feedback Light Influence on z-scan Measurement
References

4 Optical Nonlinear Absorption and Refraction of Semiconductor Thin Films
4.1 Introduction
4.2 Theoretical Basis
4.2.1 Two-Band Model for Free-Carriers-Induced Nonlinear Effects
4.2.2 Three-Band Model for Nonlinear Absorption and Refraction
4.2.3 Thermally Induced Nonlinear Absorption and Refraction
4.3 Nonlinear Absorption and Refraction of Semiconductor Thin Films.
4.3.1 Nonlinear Saturation Absorption of c-Sb-Based Phase-Change Thin Films
4.3.2 Nonlinear Reverse Saturation Absorption and Refraction ofc-InSb Thin Films
4.3.3 Nonlinear Reverse Saturation Absorption of AglnSbTe Thin Films
4.3.4 Nonlinear Absorption Reversal of c-Ge2Sb2Te5 Thin Films
4.3.5 Nonlinear Saturation Absorption and Refraction of Ag-doped Si Thin Films.
4.4 Summary
References

5 Nanoscale Spot Formation Through Nonlinear Refraction Effect
5.1 Introduction
5.2 Interference Manipulation-Induced Nanoscale Spot
5.2.1 Nonlinear Fabry-Perot Cavity Structure Model
5.3 Self-focusing Effect-Induced Nanoscale Spot Through “Thick”Samples
5.3.1 MultilayerThin Lens Self-focusing Model
5.3.2 Light Traveling Inside Positive Nonlinear Refraction Samples
5.3.3 Comparison with Equivalent Converging Lens Model
5.3.4 Application Schematic Design
5.4 Summary
References

6 Optical Super-Resolution Effect Through Nonlinear Saturation Absorption
6.1 Basic Description of Nonlinear Saturation Absorption-Induced Super-Resolution Effect
6.2 Becr-Lambert Model for Thin(or Weak)Nonlinear Saturation Absorption Sample
6.2.1 Beer-Lambert Analytical Model
6.2.2 Experimental Observation of Super-Resolution Spot
6.3 Multi-layer Model for Thick(or Strong)Nonlinear Saturation Absorption Samples
6.3.1 Multi-layer Analytical Model for Formation of Pinhole Channel
6.3.2 Super-Resolution Effect Analysis Using Multi-layer Model
6.4 Summary
References

7 Resolving Improvement by Combination of Pupil Filters and Nonlinear Thin Films
7.1 Introduction
7.2 Super-Resolution with Pupil Filters
7.2.1 Binary Optical Elements as Pupil Filters:Linearly Polarized Light Illumination
7.2.2 Temary optical Elements as Pupil Filters:Radially or CircularlyPolarizedLight Illumination
7.3 Combination of Pupil Filters with Nonlinear Absorption Thin Films
7.3.1 Combination of Nonlinear Saturation Absorption Thin Films with Three-Zone Annular Binary Phase Filters:Linearly Polarized Light Illumination
7.3.2 Combination of Nonlinear Reverse Saturation Absorption Thin Films with Five-Zone Binary Pupil Filter: Circularly Polarized Light Illumination
7.4 Nonlinear Thin Films as Pupil Filters
7.4.1 ScalarTheoretical Basis
7.4.2 Super-Resolution Spot Analysis
References

8 Applications of Nonlinear Super.Resolution Thin Films in Nano.optical Data Storage
8.1 Development Trend for Optical Information Storage
8.2 Saturation Absorption-Induced High-Density Optical Data Storage
8.2.1 Read-Only Super-Resolution Optical Disk Storage
8.2.2 Recordable Super-Resolution Nano-optical Storage
8.3 Reverse-Saturation Absorption-Induced Super-Resolution Optical Storage
8.3.1 Recordable Super-Resolution Optical Disks with Nonlinear Reverse-Saturation Absorption
8.3.2 Read-Only Optical Disk with Reverse-Saturation Absorption Effect
8.4 Read-Only Super-Resolution Optical Disks with Thermally Induced Reflectance Change Effect
References

9 Applications of Nonlinear Super.Resolution Effects in Nanolithography and High.Resolution Light Imaging
9.1 Introduction
9.2 Thermal Threshold Lithography
9.2.1 CryStallization Threshold Lithography
9.2.2 Thermal Decomposition Threshold Lithography
9.2.3 MoltenAblationThresholdLithography
9.2.4 Pattern Application:Grayscale Lithography
9.3 Nanolithography by Combination of Saturation Absorption and Thermal Threshold Efiects
9.3.1 Basic Principle
9.3.2 Nanoscale Lithography Induced by Si Thin Film with 405-nm Laser wavelength
9.4 Nanolithography by Combination of Reverse Saturation Absorptionand Thermal Diffusion Manipulation
9.4.1 Formation of Below-Diffraction-Limited Energy Absorption Spot
9.4.2 Thermal Diffusion Manipulation by Thermal Conductive Layer
9.4.3 Experimental Nanolithography Marks
9.5 Nonlinearity-Induced Super-Resolution Optical Imaging
9.5.1 Basic Principle Schematics
9.5.2 Theoretical Description
9.5.3 Experimental Testing
9.6 Summary
References
Remarkings

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)