注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當前位置: 首頁出版圖書科學技術(shù)計算機/網(wǎng)絡計算機科學理論與基礎(chǔ)知識多主體強化學習協(xié)作策略研究

多主體強化學習協(xié)作策略研究

多主體強化學習協(xié)作策略研究

定 價:¥48.00

作 者: 孫若瑩,趙鋼 著
出版社: 清華大學出版社
叢編項:
標 簽: 計算機/網(wǎng)絡 人工智能

ISBN: 9787302368304 出版時間: 2014-08-01 包裝: 平裝
開本: 16開 頁數(shù): 164 字數(shù):  

內(nèi)容簡介

  多主體的研究與應用是近年來備受關(guān)注的熱點領(lǐng)域,多主體強化學習理論與方法、多主體協(xié)作策略的研究是該領(lǐng)域重要研究方向,其理論和應用價值極為廣泛,備受廣大從事計算機應用、人工智能、自動控制、以及經(jīng)濟管理等領(lǐng)域研究者的關(guān)注?!抖嘀黧w強化學習協(xié)作策略研究》清晰地介紹了多主體、強化學習及多主體協(xié)作等基本概念和基礎(chǔ)內(nèi)容,明確地闡述了有關(guān)多主體強化學習、協(xié)作策略研究的發(fā)展過程及最新動向,深入地探討了多主體強化學習與協(xié)作策略的理論與方法,具體地分析了多主體強化學習與協(xié)作策略在相關(guān)研究領(lǐng)域的應用方法?!抖嘀黧w強化學習協(xié)作策略研究》系統(tǒng)脈絡清晰、基本概念清楚、圖表分析直觀,注重內(nèi)容的體系化和實用性。通過本書的閱讀和學習,讀者即可掌握多主體強化學習及協(xié)作策略的理論和方法,更可了解在實際工作中應用這些研究成果的手段。《多主體強化學習協(xié)作策略研究》可作為從事計算機應用、人工智能、自動控制、以及經(jīng)濟管理等領(lǐng)域研究者的學習和閱讀參考,同時高等院校相關(guān)專業(yè)研究生以及人工智能愛好者也可從中獲得借鑒。

作者簡介

暫缺《多主體強化學習協(xié)作策略研究》作者簡介

圖書目錄

Chapter 1 Introduction
1.1 Reinforcement Learning
1.1.1 Generality of Reinforcement Learning
1.1.2 Reinforcement Learning on Markov Decision Processes
1.1.3 Integrating Reinforcement Learning into Agent Architecture
1.2 Multiagent Reinforcement Learning
1.2.1 Multiagent Systems
1.2.2 Reinforcement Learning in Multiagent Systems
1.2.3 Learning and Coordination in Multiagent Systems
1.3 Ant System for Stochastic Combinatorial Optimization
1.3.1 Ants Forage Behavior
1.3.2 Ant Colony Optimization
1.3.3 MAX-MIN Ant System
1.4 Motivations and Consequences
1.5 Book Summary
Bibliography
Chapter 2 Reinforcement Learning and Its Combination with Ant Colony System
2.1 Introduction
2.2 Investigation into Reinforcement Learning and Swarm Intelligence
2.2.1 Temporal Differences Learning Method
2.2.2 Active Exploration and Experience Replay in Reinforcement Learning
2.2.3 Ant Colony System for Traveling Salesman Problem
2.3 The Q-ACS Multiagent Learning Method
2.3.I The Q-ACS Learning Algorithm
2.3.2 Some Properties of the Q-ACS Learning Method
2.3.3 Relation with Ant-Q Learning Method
2.4 Simulat'ions and Results
2.5 Conclusions
Bibliography
Chapter 3 Multiagent Learning Methods Based on Indirect Media Information Sharing
3.1 Introduction
3.2 The Multiagent Learning Method Considering Statistics Features
3.2.I Accelerated K-certainty Exploration
3.2.2 The T-ACS Learning Algorithm
3.3 The Heterogeneous Agents Learning
3.3.1 The D-ACS Learning Algorithm
3.3.2 Some Discussions about the D-ACS Learning Algorithm
3.4 Comparisons with Related State-of-the-arts
3.5 Simulations and Results
3.5.1 Experimental Results on Hunter Game
3.5.2 Experimental Results on Traveling Salesman Problem
3.6 Conclusions
Bibliography
Chapter 4 Action Conversion Mechanism in Multiagent Reinforcement Learning
4.1 Introduction
4.2 Model-Based Reinforcement Learning
4.2.1 Dyna-Q Architecture
4.2.2 Prioritized Sweeping Method
4.2.3 Minimax Search and Reinforcement Learning
4.2.4 RTP-Q Learning
4.3 The Q-ac Multiagent Reinforcement Learning
4.3.1 Task Model
4.3.2 Converting Action
4.3.3 Multiagent Cooperation Methods
4.3.4 Q-value Update
4.3.5 The Q-ac Learning Algorithm
4.3.6 Using Adversarial Action Instead of s Probability Exploration
……
Chapter 5 Multiagent Learning Approaches Applied to Vehicle Routing Problems
Chapter 6 Multiagent learning Methods Applied to Multicast Routing Problems
Chapter 7 Multiagent Reinforcement Learning for Supply Chain Management
Chapter 8 Multiagent Learning Applied in Supply Chain Ordering Management

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號