注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書工具書其他工具書智能信息挖掘與處理

智能信息挖掘與處理

智能信息挖掘與處理

定 價:¥68.00

作 者: 楊振艦,于彥偉,張運杰 著
出版社: 化學(xué)工業(yè)出版社
叢編項:
標(biāo) 簽: 計算機/網(wǎng)絡(luò) 人工智能

ISBN: 9787122209047 出版時間: 2014-09-01 包裝: 平裝
開本: 16開 頁數(shù): 149 字數(shù):  

內(nèi)容簡介

  本書從基于密度的空間數(shù)據(jù)流聚類、簇結(jié)構(gòu)挖掘、軌跡數(shù)據(jù)流在線聚類及異常檢測四個方面,分析了現(xiàn)有數(shù)據(jù)流挖掘算法的挖掘效果、運行效率、可伸縮性與參數(shù)敏感性等相關(guān)問題,提出了一系列適用于海量時空數(shù)據(jù)流在線分析的方法與處理框架。然后基于可視化數(shù)據(jù)挖掘技術(shù)的城市地下空間GIS系統(tǒng)的關(guān)鍵技術(shù)和構(gòu)建方法,改進機器學(xué)習(xí)算法、空間和非空間的聚類算法,研究結(jié)合挖掘算法的相關(guān)可視化技術(shù)。本書可作為高等院校計算機工程、信息工程、智能機器人學(xué)、工業(yè)自動化、模式識別等學(xué)科研究生的教材或教學(xué)參考書,亦可供智能信息挖掘與處理研究人員參考。

作者簡介

暫缺《智能信息挖掘與處理》作者簡介

圖書目錄

1概論1
1.1時空數(shù)據(jù)挖掘研究概述3
1.2空間數(shù)據(jù)流聚類算法研究5
1.2.1基于密度的聚類算法5
1.2.2數(shù)據(jù)流聚類算法9
1.3時空軌跡數(shù)據(jù)挖掘研究現(xiàn)狀11
1.3.1軌跡距離測量方法11
1.3.2軌跡數(shù)據(jù)流聚類算法相關(guān)研究14
1.3.3移動目標(biāo)軌跡模式挖掘相關(guān)研究17
1.3.4面向鄰居的實時查詢處理方法20
1.4GIS可視化空間數(shù)據(jù)挖掘技術(shù)21
1.5城市超前地質(zhì)預(yù)報發(fā)展現(xiàn)狀22
1.6本章小結(jié)23
2基于密度的空間數(shù)據(jù)流在線聚類算法24
2.1引言24
2.2在線聚類相關(guān)定義25
2.2.1基本概念25
2.2.2在線聚類描述27
2.3OLDStream算法27
2.3.1算法思想27
2.3.2算法描述28
2.3.3時間復(fù)雜度31
2.4實驗測試及分析32
2.4.1聚類效果測試32
2.4.2性能測試34
2.4.3輸入?yún)?shù)敏感度分析35
2.5本章小結(jié)38
3海量軌跡數(shù)據(jù)流在線聚類算法39
3.1概述39
3.2問題定義40
3.2.1基本概念40
3.2.2CTraStream基本框架43
3.3基于密度的線段流聚類44
3.3.1新線段的影響44
3.3.2CLnStream描述45
3.4軌跡簇在線更新方法46
3.4.1TC-Tree索引結(jié)構(gòu)47
3.4.2由線段簇更新軌跡簇48
3.4.3TraCluUpdate算法描述49
3.5實驗評估及分析50
3.5.1聚類效果測試50
3.5.2性能測試52
3.5.3參數(shù)敏感度分析53
3.6本章小結(jié)54
4面向?qū)崟r查詢處理的時空軌跡流挖掘框架55
4.1引言55
4.2框架概述56
4.2.1問題定義56
4.2.2TSMF框架57
4.3軌跡數(shù)據(jù)流挖掘58
4.3.1軌跡數(shù)據(jù)流聚類58
4.3.2Swarm-HT在線更新59
4.4實時查詢處理方法60
4.4.1CCTC查詢60
4.4.2CCSwarm查詢61
4.4.3k-NNT查詢62
4.5實驗評估63
4.5.1挖掘效果64
4.5.2挖掘效率65
4.5.3查詢處理性能測試65
4.5.4參數(shù)敏感度分析66
4.6本章小結(jié)66
5基于GIS的可視化空間數(shù)據(jù)挖掘技術(shù)68
5.1地理信息系統(tǒng)68
5.1.1空間數(shù)據(jù)模型68
5.1.2空間關(guān)聯(lián)規(guī)則72
5.1.3空間數(shù)據(jù)庫74
5.2空間數(shù)據(jù)挖掘76
5.2.1空間關(guān)聯(lián)規(guī)則及其挖掘方法76
5.2.2支持向量機挖掘方法79
5.2.3聚類方法80
5.3空間數(shù)據(jù)挖掘過程81
5.4空間數(shù)據(jù)挖掘的可視化81
5.4.1基于Java 3D的空間關(guān)聯(lián)規(guī)則可視化82
5.4.2基于平行坐標(biāo)理論的多維多時相空間數(shù)據(jù)可視化87
5.5本章小結(jié)90
6支持向量機算法的研究91
6.1支持向量機算法91
6.1.1模式的區(qū)分91
6.1.2SVM學(xué)習(xí)模型95
6.1.3SVM算法已知的問題96
6.1.4應(yīng)用SVM算法進行巖體分類96
6.2基于案例推理CBR方法102
6.2.1基于案例推理方法中的測度102
6.2.2案例庫的設(shè)計原則104
6.2.3基于CBR方法的改進SVM算法104
6.3基于空間區(qū)域劃分的SVM方法105
6.4算法分析107
6.5本章小結(jié)110
7城市地下空間GIS分類技術(shù)及分析111
7.1空間聚類111
7.2城市地下空間GIS空間聚類算法112
7.2.1統(tǒng)計距離方法112
7.2.2基于相似形理論的夾角余弦方法112
7.2.3基于k中心點法的空間聚類113
7.3空間分類結(jié)果評價指標(biāo)115
7.4文本分類115
7.4.1預(yù)處理技術(shù)116
7.4.2特征提取技術(shù)117
7.4.3特征項權(quán)重計算118
7.5城市地下空間GIS的文本分類算法119
7.6文本分類效果評價指標(biāo)121
7.7分類技術(shù)的難點分析121
7.8本章小結(jié)122
8空間數(shù)據(jù)挖掘過程中的數(shù)據(jù)質(zhì)量控制及改進方法123
8.1空間數(shù)據(jù)的不確定性123
8.1.1空間數(shù)據(jù)不確定性的來源124
8.1.2空間數(shù)據(jù)誤差評價指標(biāo)125
8.2空間數(shù)據(jù)質(zhì)量評價126
8.2.1評價的內(nèi)容126
8.2.2評價的方法127
8.3城市地下空間數(shù)據(jù)獲取方法128
8.3.1城市地質(zhì)工程及數(shù)據(jù)特點128
8.3.2爆破震動監(jiān)測測量方法130
8.4三明治空間抽樣方法132
8.5本章小結(jié)134
9城市地下空間數(shù)據(jù)挖掘GIS原型系統(tǒng)構(gòu)建135
9.1系統(tǒng)構(gòu)建策略135
9.2系統(tǒng)功能設(shè)計136
9.3數(shù)據(jù)流程設(shè)計139
9.4插件式系統(tǒng)集成方法139
9.5系統(tǒng)運行效果140
9.6本章小結(jié)142
附錄符號說明144
參考文獻145

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號