注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當前位置: 首頁出版圖書科學技術(shù)工業(yè)技術(shù)自動化技術(shù)、計算技術(shù)遷移學習:理論與實踐

遷移學習:理論與實踐

遷移學習:理論與實踐

定 價:¥29.00

作 者: 邵浩 著
出版社: 上海交通大學出版社
叢編項:
標 簽: 暫缺

ISBN: 9787313106568 出版時間: 2013-12-01 包裝: 平裝
開本: 16開 頁數(shù): 121 字數(shù):  

內(nèi)容簡介

  《遷移學習:理論與實踐》著眼于管理實際中的資源再利用,對數(shù)據(jù)挖掘領(lǐng)域最前沿的遷移學習進行了詳細闡述,并著重介紹了應(yīng)用最為廣泛的分類學習,將最前沿的研究進行了歸納總結(jié),并通過實際算法分析,將領(lǐng)域內(nèi)的最新進展提供給讀者,使讀者能夠使用遷移學習的工具構(gòu)建模型并應(yīng)用到實際問題?!哆w移學習:理論與實踐》主要讀者對象為具有管理和計算機背景并在數(shù)據(jù)挖掘領(lǐng)域有初步研究的學者。

作者簡介

  邵浩,上海對外經(jīng)貿(mào)大學WTO研究教育學院講師,日本國立九州大學工學博士,曾就讀于中國科學技術(shù)大學管理學院碩博連讀課程。研究方向為數(shù)據(jù)挖掘、管理科學與工程。

圖書目錄

Preface
Chapter 1 Introduction
1.1 Background and Motivation
1.2 COntributiong
1.2.1 Extended MDLP for Transfer Learning
1.2.2 Compact Coding for Hyperplane Classifiers in Transfer Learning
1.2.3 Transfer Active Learning
1.2.4 Gaussian Process for Transfer Learning
1.3 Book OverviewChapter 2 Literature Review and Preliminaries for MDLP
2.1 Transfer Learning
2.2 Active Learning and Transfer Active Learning
2.3 Preljminaries for MD[.PChapter 3 Extended MDL Principle for Feature-based Transfer
Learning
3.1 IntroductiOn
3.2 Problem Statement
3.3 Preliminaries for Encoding
3.3.1 Theoretical Foundation of the EMDLP
3.3.2 Adaptation of the EMDLP to Our Problem
3.4 Supervised Inductive Transfer Learning Algorithm
3.4.1 EMDLP with Incremental Search
3.4.2 EMDLP with Hill Climbing
3.5 Experiments
3.5.1 Experimental Settings
3.5.2 Experimental Results on Synthetic Data Sets
3.5.3 Experimental Results on Real Data Sets
3.6 SummaryChapter 4 Compact Coding for Hyperplane Classifiers in a
Heterogeneous Environment
4.1 Introduction
4.2 Problem Setting
4.3 Compact Coding for Hyperplane Classifiers in
Heterogeneous Environment
4.3.1 Macro Level:Arrange Related Tasks
4.3.2 Micro Level Evaluation
4.3.3 The Transfer Learning Algorithm
4.4 Experiments
4.4.1 Experimental Setting
4.4.2 Experimental Results
4.5 SummaryChapter 5 Adaptive Transfer Learning with Query by
Committee
5.1 IntroductiOn
5.2 Problem Setting and Preliminaries
5.3 Probabilistic Framework for ALTL
5.4 The ALTL Algorithm and Analysis
5.4.1 The Procedure of ALTL
5.4.2 Termination Condition and Analysis
5.5 Experiments
5.5.1 Experimental Setting
5.5.2 Results on Synthetic Data Sets
5.5.3 Results on Real Data Sets
5.6 SummaryChapter 6 Gaussian Process for Transfer Learning through
Minimum Encoding
6.1 IntrOduction
6.2 Gaussian Process for Classification
6.3 The GPTL Algorithm
6.3.1 Arrange Related Tasks
6.3.2 The Instance Level Similarities
6.4 Experiments
6.5 SummaryChapter 7 Concluding Comments
Appendix A Target Concepts in Chapter 3
Bibliography

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號