注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當前位置: 首頁出版圖書科學技術(shù)工業(yè)技術(shù)建筑科學建筑理論混凝土與可持續(xù)發(fā)展

混凝土與可持續(xù)發(fā)展

混凝土與可持續(xù)發(fā)展

定 價:¥298.00

作 者: 隋同波、(挪威)Per Jahren(珀·雅潤)
出版社: 化學工業(yè)出版社
叢編項:
標 簽: 建筑 建筑材料 建筑科學

ISBN: 9787122179357 出版時間: 2013-09-01 包裝: 精裝
開本: 16開 頁數(shù): 440 字數(shù):  

內(nèi)容簡介

  回顧混凝土與建筑發(fā)展的歷程,作者關(guān)注并提出了如下的焦點問題及其演變方向:安全性→耐久性→服役性/功能性→可持續(xù)性本書全面分析了世界混凝土可持續(xù)發(fā)展所面臨挑戰(zhàn)的復(fù)雜性和應(yīng)對方案的多樣性。第一章主要從混凝土對社會與經(jīng)濟發(fā)展的作用和影響的角度對混凝土可持續(xù)性問題進行了探討;第二章重點介紹國際范圍內(nèi)混凝土可持續(xù)發(fā)展所涉及的環(huán)境評價工具和方法論,并分析了不同的關(guān)注焦點、評價方法和時限對混凝土可持續(xù)性的影響;第三、四章著重分析了水泥混凝土領(lǐng)域所面臨的排放、捕集與吸收和循環(huán)的挑戰(zhàn);第五章分析了其他方面的環(huán)境挑戰(zhàn);第六、七章給出了綜合評述及未來發(fā)展趨勢的分析;最后列出了500多條參考文獻,以供有興趣的讀者深度查閱。本書主要探討在全球范圍內(nèi)提升混凝土可持續(xù)性的系統(tǒng)思考方法和技術(shù)途徑,以此鼓勵和幫助有興趣的讀者(包括政策制定者,建筑與材料領(lǐng)域的專家、工程師,高等學校的教授、學生,以及致力于環(huán)境與可持續(xù)發(fā)展領(lǐng)域的人員等)針對混凝土可持續(xù)發(fā)展所面臨的問題,用系統(tǒng)方法論對其資源可獲取性、技術(shù)與經(jīng)濟可行性、環(huán)境相容性以及社會責任等要素進行全方位的思考和行動。

作者簡介

暫缺《混凝土與可持續(xù)發(fā)展》作者簡介

圖書目錄

Foreword by V. Mohan Malhotra xi
Foreword by Wei Sun xiii
Preface xv
Acknowledgements xvii
The authors xix
1 Introduction
1.1 The economical impact of concrete
1.2 Concrete and social progress
2 Environmental issues
2.1 Global/regional/local aspects
2.2 Rating systems
2.3 Evaluation systems/tools
2.4 ISO methodology/standards
2.5 Variation in focus
2.5.1 Different sectors of the concrete industry tend to focus on different aspects
2.5.2 Focus: Lifetime expectancy perspectives
2.5.3 Focus: 
2.5.4 Focus: 
2.6 Traditions/testing
2.6.1 Example
2.6.2 Example
2.6.3 Example
3 Emissions and absorptions
3.1 General
3.2 CO2 emission from cement and concrete production
3.3 Emission of other greenhouse gases
3.4 Absorption/carbonation
3.5 The tools and possible actions
3.5.1 Increased utilisation of supplementary cementing materials
3.5.2 Fly ash
3.5.3 Blast furnace slag
3.5.4 Silica fume
3.5.5 Metakaolin
3.5.6 Rice husk ash (RHA)
3.5.7 Natural pozzolans
3.5.8 Other ashes and slags
3.5.8.1 Sewage sludge incineration ash (SSIA)
3.5.8.2 Ferroalloy slag
3.5.8.3 Barium and strontium slag
3.5.8.4 Other types of slag
3.5.8.5 Ashes from co-combustion
3.5.8.6 Wood ash
3.5.8.7 Fluidised bed ash
3.5.9 Limestone powder
3.5.10 Other supplementary cementitious materials
3.5.11 Improvements and more efficient cement production
3.5.12 New/other types of cement/binders
3.5.12.1 High-belite cement(HBC)
3.5.12.2 Sulphur concrete
3.5.13 Increased carbonation
3.5.14 Better energy efficiency in buildings
3.5.15 Improved mixture design/packing technology/water reduction
3.5.16 Increased building flexibility, and more sustainable design and recycling practice
3.5.17 Miscellaneous
3.5.17.1 Production restrictions
3.5.17.2 The testing regime
3.5.18 Carbon capture and storage (CCS)
3.5.18.1 Capture
3.5.18.2 Storage
3.6 Variation in focus
3.6.1 Focus 1: Lifetime expectancy perspective
3.6.2 Focus 2: 
3.6.3 Focus 3: 
3.7 Some conclusions
4 Recycling
4.1 Recycling of concrete
4.1.1 Norway
4.1.2 Japan
4.1.3 The Netherlands
4.1.4 Hong Kong, China
4.1.5 General
4.1.5.1 Processing technology
4.1.5.2 Fines
4.2 Recycling of other materials as aggregate in concrete
4.2.1 Used rubber tires in concrete
4.2.2 Aggregate manufactured from fines
4.2.3 Processed sugar cane ash
4.2.4 Recycled plastic, e.g., bottles
4.2.5 Hempcrete and other “straw concretes”
4.2.6 Papercrete
4.2.7 Oil palm shell lightweight concrete
4.2.8 Glass concrete
4.2.9 Paper mill ash for self-compacting concrete (SCC)
4.2.10 Slag
4.2.11 Recycling of “doubtful” waste as aggregate
4.2.12 Iron mine mill waste (mill tailings)
4.2.13 Bauxite residue/red sand
4.2.14 Copper slag
4.2.15 Other materials
4.2.16 Waste latex paint
4.2.17 Fillers for self-compacting concrete
4.3 Recycling of other materials as reinforcement in concrete
4.4 Recycling of other materials as binders in concrete
4.4.1 Waste glass
4.4.2 Recycling of fluid catalytic cracking catalysts
4.5 Recycling of cement kiln dust (CKD)
5 The environmental challenges―other items
5.1 Aggregate shortage
5.2 Durability/longevity
5.3 Energy savings
5.4 Health
5.4.1 Skin burn
5.4.2 The chromium challenge
5.4.3 Compaction by vibration
5.4.4 Dust
5.4.5 Emission and moisture in concrete
5.4.6 Form oil
5.4.7 NOx-absorbing concrete
5.4.7.1 General
5.4.7.2 Principle of reaction
5.4.7.3 The catalyst
5.4.7.4 The effects
5.4.7.5 Concrete―product areas
5.4.7.6 Other experiences
5.4.7.7 Climate change and health
5.5 Leakage
5.5.1 General
5.5.2 Leakage of pollutants from cement and concrete
5.5.2.1 Leakage from the cement manufacture process
5.5.2.2 Leakage from concrete
5.5.3 Concrete to prevent leakage
5.6 Noise pollution
5.6.1 Noise reduction in concrete production
5.6.2 Noise reduction from traffic
5.6.3 Reduction of noise pollution in buildings
5.6.4 Step sound reduction in stairways
5.7 Radiation
5.7.1 Effects of radioactive radiation on the human body
5.7.1.1 Alpha particles (or alpha radiation)
5.7.1.2 Beta particles
5.7.1.3 X-rays and gamma rays
5.7.2 Natural radioactivity in building materials
5.7.3 Radiation from cement and concrete
5.7.4 Radioactivity risk reduction with cement and concrete
5.7.4.1 Concrete as a shield of radiation
5.7.4.2 Encapsulation of radioactive materials with cement and concrete
5.7.5 Clearance of radioactive concrete
5.8 Safety
5.8.1 Concrete as a safety tool
5.8.2 Concrete safety levels in a climate change perspective
5.9 Water
5.9.1 Water shortage
5.9.2 Managing the increased precipitation
5.9.2.1 Pervious concrete
5.9.2.2 Pervious ground with concrete paver systems
5.9.2.3 Delaying systems
5.9.3 Reuse of wash water from concrete production
5.9.4 Escape of wash water from concrete production to freshwater and the sea
5.9.5 Food supply―artificial fish reefs (AFRs)
5.9.5.1 History
5.9.5.2 Where have AFRs been used?
5.9.5.3 Motivations for establishing AFRs
5.9.5.4 Design factors
5.9.5.5 Some examples
5.9.5.6 Restoration of coral reefs
5.9.5.7 The Tjuvholmen project
5.9.6 Erosion protection
5.10 Wastes
6 New possibilities and challenges
6.1 Small hydroelectric power stations
6.2 Windmills
6.3 New raw materials/low energy and low CO2 cements
6.3.1 Principle for clinker composition design
6.3.2 Lower energy and low-emission clinker preparation
6.3.3 Performance evaluation of HBC
6.3.3.1 Strength
6.3.3.2 Heat evolution characteristics
6.3.3.3 Chemical corrosion resistance
6.3.3.4 Drying shrinkage
6.3.3.5 Existing standards for HBC
6.3.3.6 Simplified explanation for the excellent performance of HBC
6.3.4 Latest results on belite-calcium Sulfoaluminate (BCSA) cement
6.4 New concrete products and components
7 The future
References
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號