第1章 概述 1.1 數(shù)字圖像處理及特點(diǎn)(Characteristics and Processing of Digital Image) 1.1.1 數(shù)字圖像與數(shù)字圖像處理(Digital Images and Digital Image Processing) 1.1.2 數(shù)字圖像處理的特點(diǎn)(Characteristics of Digital Image Processing) 1.2 數(shù)字圖像處理系統(tǒng)(System of Digital Image Processing) 1.2.1 數(shù)字圖像處理系統(tǒng)的結(jié)構(gòu)(Structure of Digital Image Processing System) 1.2.2 數(shù)字圖像處理的優(yōu)點(diǎn)(Advantages of Digital Image Processing) 1.3 數(shù)字圖像處理的主要研究?jī)?nèi)容(Research Content in Digital Image Processing) 1.4 數(shù)字圖像處理的應(yīng)用和發(fā)展 (Applications and Development of Digital Image Processing) 1.4.1 數(shù)字圖像處理的應(yīng)用(Applications of Digital Image Processing) 1.4.2 數(shù)字圖像處理領(lǐng)域的發(fā)展動(dòng)向(Future Direction in the Field of Digital Image Processing) 1.5 全書內(nèi)容簡(jiǎn)介(Brief Introduction of This Book) 小結(jié)(Summary) 習(xí)題(Exercises) 第2章 數(shù)字圖像處理的基礎(chǔ) 2.1 人類的視覺感知系統(tǒng)(Visual System of Human Beings) 2.1.1 視覺系統(tǒng)的基本構(gòu)造(Basic Structure of Visual System) 2.1.2 亮度適應(yīng)和鑒別(Intensity Adaption and Identification) 2.2 數(shù)字圖像的基礎(chǔ)知識(shí)(Basics of Digital Image) 2.2.1 圖像的數(shù)字化及表達(dá)(Image Digitalization and Representation) 2.2.2 圖像的獲?。↖mage Acquisition) 2.2.3 像素間的基本關(guān)系(Basic Relationships between Pixels) 2.2.4 圖像的分類(Image Classification) 小結(jié)(Summary) 習(xí)題(Exercises)
第3章 圖像基本運(yùn)算 3.1 概述(Introduction) 3.2 點(diǎn)運(yùn)算(Point Operation) 3.2.1 線性點(diǎn)運(yùn)算(Linear Point Operation) 3.2.2 非線性點(diǎn)運(yùn)算(Non-Linear Point Operation) 3.3 代數(shù)運(yùn)算與邏輯運(yùn)算(Algebra and Logical Operation) 3.3.1 加法運(yùn)算(Addition) 3.3.2 減法運(yùn)算(Subtraction) 3.3.3 乘法運(yùn)算(Multiplication) 3.3.4 除法運(yùn)算(Division) 3.3.5 邏輯運(yùn)算(Logical Operation) 3.4 幾何運(yùn)算(Geometric Operation) 3.4.1 圖像的平移(Image Translation) 3.4.2 圖像的鏡像(Image Mirror) 3.4.3 圖像的旋轉(zhuǎn)(Image Rotation) 3.4.4 圖像的縮放(Image Zoom) 3.4.5 灰度重采樣(Gray Resampling) 小結(jié)(Summary) 習(xí)題(Exercises) 第4章 圖像變換 4.1 連續(xù)傅里葉變換(Continuous Fourier Transform) 4.2 離散傅里葉變換(Discrete Fourier Transform) 4.3 快速傅里葉變換(Fast Fourier Transform) 4.4 傅里葉變換的性質(zhì)(Properties of Fourier Transform) 4.4.1 可分離性(Separability) 4.4.2 平移性質(zhì)(Translation) 4.4.3 周期性和共軛對(duì)稱性(Periodicity and Conjugate Symmetry) 4.4.4 旋轉(zhuǎn)性質(zhì)(Rotation) 4.4.5 分配律(Distribution Law) 4.4.6 尺度變換(Scaling) 4.4.7 平均值(Average Value) 4.4.8 卷積定理(Convolution Theorem) 4.5 圖像傅里葉變換實(shí)例(Examples of Image Fourier Transform) 4.6 其他離散變換(Other Discrete Transform) 4.6.1 離散余弦變換(Discrete Cosine Transform) 4.6.2 二維離散沃爾什-哈達(dá)瑪變換(Walsh-Hadamard Transform) 4.6.3 卡胡楠-列夫變換(Kahunen-Loeve Transform) 小結(jié)(Summary) 習(xí)題(Exercises) 第5章 圖像增強(qiáng) 5.1 圖像增強(qiáng)的概念和分類(Concepts and Categories of Image Enhancement) 5.2 空間域圖像增強(qiáng)(Image Enhancement in the Spatial Domain) 5.2.1 基于灰度變換的圖像增強(qiáng)(Image Enhancement based on Gray Levels) 5.2.2 基于直方圖處理的圖像增強(qiáng)(Image Enhancement based on Histogram Processing) 5.2.3 空間域?yàn)V波增強(qiáng)(Spatial Filtering Enhancement) 5.3 頻率域圖像增強(qiáng)(Image Enhancement in the Frequency Domain) 5.3.1 頻率域圖像增強(qiáng)基本理論(Fundamentals of Image Enhancement in the Frequency Domain) 5.3.2 頻率域平滑濾波器(Frequency Smoothing Filters) 5.3.3 頻率域銳化濾波器(Frequency Sharpening Filters) 5.3.4 同態(tài)濾波器(Homomorphic Filters) 小結(jié)(Summary) 習(xí)題(Exercises) 第6章 圖像復(fù)原 6.1 圖像復(fù)原及退化模型基礎(chǔ)(Fundamentals of Image Restoration and Degradation Model) 6.1.1 圖像退化的原因及退化模型(Causes of Image Degradation and Degradation Model) 6.1.2 圖像退化的數(shù)學(xué)模型(Mathematic Model of Image Degradation) 6.1.3 復(fù)原技術(shù)的概念及分類(Concepts and Categories of Restoration) 6.2 噪聲模型(Noise Models) 6.2.1 一些重要噪聲的概率密度函數(shù)(Some Important Noise Probability Density Functions) 6.2.2 噪聲參數(shù)的估計(jì)(Estimation of Noise Parameters) 6.3 空間域?yàn)V波復(fù)原(Restoration with Spatial Filtering) 6.3.1 均值濾波器(Mean Filters) 6.3.2 順序統(tǒng)計(jì)濾波器(Order-Statistics Filters) 6.4 頻率域?yàn)V波復(fù)原(Restoration with Frequency Domain Filtering) 6.4.1 帶阻濾波器(Bandreject Filters) 6.4.2 帶通濾波器(Bandpass Filters) 6.4.3 其他頻率域?yàn)V波器(Other Filters in Frequency Domain) 6.5 估計(jì)退化函數(shù)(Estimating the Degradation Function) 6.5.1 圖像觀察估計(jì)法(Estimation by Image Observation) 6.5.2 試驗(yàn)估計(jì)法(Estimation by Experimentation) 6.5.3 模型估計(jì)法(Estimation by Modeling) 6.6 逆濾波(Inverse Filtering) 6.7 最小均方誤差濾波-維納濾波(Minimum Mean Square Error Filtering-Wiener Filtering) 6.8 幾何失真校正(Geometric Distortion Correction) 6.8.1 空間變換(Spatial Transformation) 6.8.2 灰度插值(Gray-Level Interpolation) 6.8.3 實(shí)現(xiàn)(Implementation) 小結(jié)(Summary) 習(xí)題(Exercises) 第7章 圖像壓縮編碼 7.1 概述(Introduction) 7.1.1 圖像的信息量與信息熵(Information Content and Entropy) 7.1.2 圖像數(shù)據(jù)冗余(Image Data Redundancy) 7.1.3 圖像壓縮編碼方法(Coding Methods of Image Compression) 7.1.4 圖像壓縮技術(shù)的性能指標(biāo)(Evaluation Index of Image Compression Approaches) 7.1.5 保真度準(zhǔn)則(Fidelity Criteria) 7.2 無失真圖像壓縮編碼(Lossless Image Compression) 7.2.1 哈夫曼編碼(Huffman Coding) 7.2.2 游程編碼(Run-Length Coding) 7.2.3 算術(shù)編碼(Arithmetic Coding) 7.3 有限失真圖像壓縮編碼(Lossy Image Compression) 7.3.1 率失真函數(shù)(Rate Distortion Function) 7.3.2 預(yù)測(cè)編碼和變換編碼(Prediction Coding and Transform Coding) 7.3.3 矢量量化編碼(Vector Quantification Coding) 7.4 圖像編碼新技術(shù)(New Image Coding Technology) 7.4.1 子帶編碼(Subband Coding) 7.4.2 模型基編碼(Model-Based Coding) 7.4.3 分形編碼(Fractal Coding) 7.5 圖像壓縮技術(shù)標(biāo)準(zhǔn)(Image Compression Standards) 7.5.1 概述(Introduction) 7.5.2 JPEG壓縮(JPEG Compression) 7.5.3 JPEG 7.5.4 H.26x標(biāo)準(zhǔn)(H.26x Standards) 7.5.5 MPEG標(biāo)準(zhǔn)(MPEG Standards) 小結(jié)(Summary) 習(xí)題(Exercises)
第8章 圖像分割 8.1 概述(Introduction) 8.2 邊緣檢測(cè)和連接(Edge Detection and Connection) 8.2.1 邊緣檢測(cè)(Edge Detection) 8.2.2 邊緣連接(Edge Connection) 8.3 閾值分割(Image Segmentation using Threshold) 8.3.1 基礎(chǔ)(Foundation) 8.3.2 全局閾值(Global Threshold) 8.3.3 自適應(yīng)閾值(Adaptive Threshold) 8.3.4 最佳閾值的選擇(Optimal Threshold) 8.3.5 分水嶺算法(Watershed Algorithm) 8.4 區(qū)域分割(Region Segmentation) 8.4.1 區(qū)域生長(zhǎng)(Region Growing) 8.4.2 區(qū)域分裂合并法(Region Splitting and Merging) 8.5 二值圖像處理(Binary Image Processing) 8.5.1 數(shù)學(xué)形態(tài)學(xué)圖像處理(Mathematical Morphology Image Processing) 8.5.2 開運(yùn)算和閉運(yùn)算(Open Operation and Close Operation) 8.5.3 一些基本形態(tài)學(xué)算法(Some Basic Morphological Algorithms) 8.6 分割圖像的結(jié)構(gòu)(Construction of Image Segmentation) 8.6.1 物體隸屬關(guān)系圖(Relationships between Objects) 8.6.2 邊界鏈碼(Edge Chain Code) 小結(jié)(Summary) 習(xí)題(Exercises) 第9章 彩色圖像處理 9.1 彩色圖像基礎(chǔ)(Fundamentals of Color Image) 9.1.1 彩色圖像的概念(Concepts of Color Image) 9.1.2 彩色基礎(chǔ)(Color Fundamentals) 9.2 彩色模型(Color Models) 9.2.1 RGB模型(RGB Color Model) 9.2.2 CMY和CMYK模型(CMY and CMYK Color Model) 9.2.3 HSI模型(HSI Color Model) 9.3 偽彩色處理(Pseudocolor Image Processing) 9.3.1 背景(Background) 9.3.2 強(qiáng)度分層(Intensity Slicing) 9.3.3 灰度級(jí)到彩色變換(Transformation of Gray Levels to Color) 9.3.4 假彩色處理(False-Color Image Processing) 9.4 全彩色圖像處理(Full-Color Image Processing) 9.4.1 全彩色圖像處理基礎(chǔ)(Basics of Full-Color Image Processing) 9.4.2 彩色平衡(Color Balance) 9.4.3 彩色圖像增強(qiáng)(Color Image Enhancement) 9.4.4 彩色圖像平滑(Color Image Smoothing) 9.4.5 彩色圖像銳化(Color Image Sharpening) 9.5 彩色圖像分割(Color Image Segmentation) 9.5.1 HSI彩色空間分割(Segmentation in HSI Color Space) 9.5.2 RGB彩色空間分割(Segmentation in RGB Color Space) 9.5.3 彩色邊緣檢測(cè)(Color Edge Detection) 9.6 彩色圖像處理的應(yīng)用(Applications of Color Image Processing) 小結(jié)(Summary) 習(xí)題(Exercises) 第10章 圖像表示與描述 10.1 背景(Background) 10.2 顏色特征(Color Feature) 10.2.1 灰度特征(Intensity Feature) 10.2.2 直方圖特征(Histogram Feature) 10.2.3 顏色矩(Color Moments) 10.3 紋理特征(Representation of Image Texture) 10.3.1 自相關(guān)函數(shù)(Autocorrelation Function) 10.3.2 灰度差分統(tǒng)計(jì)(Statistics of Intensity Difference) 10.3.3 灰度共生矩陣(Gray-Level Co-occurrence Matrix) 10.3.4 頻譜特征(Spectrum Features) 10.4 邊界特征(Boundary Feature) 10.4.1 邊界表達(dá)(Boundary Representation) 10.4.2 邊界特征描述(Boundary Description) 10.5 區(qū)域特征(Region Feature) 10.5.1 簡(jiǎn)單的區(qū)域描述(Simple Region Descriptors) 10.5.2 拓?fù)涿枋觯═opological Descriptors) 10.5.3 形狀描述(Shape Descriptors) 10.5.4 矩(Moment) 10.6 運(yùn)用主成分進(jìn)行描述(Use of Principal Components for Description) 10.6.1 主成分基礎(chǔ)(Fundamentals of Principal Components Analysis) 10.6.2 主成分描述(Description by Principal Components Analysis) 10.7 特征提取的應(yīng)用(Application of Feature Extraction) 10.7.1 粒度測(cè)定(Granularity Mensuration) 10.7.2 圓形目標(biāo)判別(Circle Shape Recognition) 10.7.3 運(yùn)動(dòng)目標(biāo)特征提?。‵eature Extraction of Moving Object) 小結(jié)(Summary) 習(xí)題(Exercises) 參考文獻(xiàn)