劉憲,1991年5月獲密歇根大學(xué)社會(huì)學(xué)博士學(xué)位,現(xiàn)任美國(guó)國(guó)防醫(yī)科大學(xué)(Uniformed ServicesUniversity of the HealthSciences)精神病學(xué)系高級(jí)研究員、副教授及美國(guó)沃爾特里德國(guó)家軍事醫(yī)學(xué)中心(Walter Reed Army MedicalCenter)研究員、高級(jí)統(tǒng)計(jì)師。在國(guó)際頂級(jí)刊物發(fā)表學(xué)術(shù)論文數(shù)十篇。截至2012年3月,所發(fā)表學(xué)術(shù)論文在國(guó)際各類刊物被引用1000多次。劉憲博士的主要研究領(lǐng)域?yàn)樯娣治雠c死亡率交叉研究、縱向資料分析、創(chuàng)傷事件與精神疾病。
圖書目錄
Preface 1 Introduction 1.1 What is survival analysis and how is it applied? 1.2 The history of survival analysis and its progress 1.3 General features of survival data structure 1.4 Censoring 1.4.1 Mechanisms of right censoring 1.4.2 Left censoring, interval censoring, and left truncation 1.5 Time scale and the origin of time 1.5.1 Observational studies 1.5.2 Biomedical studies 1.5.3 Health care utilization 1.6 Basic lifetime functions 1.6.1 Continuous lifetime functions 1.6.2 Discrete lifetime functions 1.6.3 Basic likelihood functions for right, left, and intervalcensoring 1.7 Organization of the book and data used for illustrations 1.8 Criteria for performing survival analysis 2 Descriptive approaches of survival analysis 2.1 The Kaplan-Meier (product-limit) and Nelson-Aalenestimators 2.1.1 Kaplan-Meier estimating procedures with or withoutcensoring 2.1.2 Formulation of the Kaplan-Meier and Nelson-Aalenestimators 2.1.3 Variance and standard error of the survival function 2.1.4 Confidence intervals and confidence bands of the survivalfunction 2.2 Life table methods 2.2.1 Life table indicators 2.2.2 Multistate life tables 2.2.3 Illustration: Life table estimates for older Americans 2.3 Group comparison of survival functions 2.3.1 Logrank test for survival curves of two groups 2.3.2 The Wilcoxon rank sum test on survival curves of twogroups 2.3.3 Comparison of survival functions for more than twogroups 2.3.4 Illustration: Comparison of survival curves between marriedand unmarried persons 2.4 Summar 3 Some popular survival distribution functions 3.1 Exponential survival distribution 3.2 The Weibull distribution and extreme value theory 3.2.1 Basic specifications of the Weibull distribution 3.2.2 The extreme value distribution 3.3 Gamma distribution 3.4 Lognormal distribution 3.5 Log-logistic distribution 3.6 Gompertz distribution and Gompertz-type hazard models 3.7 Hypergeometric distribution 3.8 Other distributions 3.9 Summary 4 Parametric regression models of survival analysis 4.1 General specifications and inferences of parametric regressionmodels 4.1.1 Specifications of parametric regression models on the hazardfunction 4.1.2 Specifications of accelerated failure time regressionmodels 4.1.3 Inferences of parametric regression models and likelihoodfunctions 4.1.4 Procedures of maximization and hypothesis testing on MLestimates 4.2 Exponential regression models 4.2.1 Exponential regression model on the hazard function 4.2.2 Exponential accelerated failure time regression model 4.2.3 Illustration: Exponential regression model on marital statusand survival among older Americans 4.3 Weibull regression models 4.3.1 Weibull hazard regression model 4.3.2 Weibull accelerated failure time regression model 4.3.3 Conversion of Weibull proportional hazard and AFI'parameters 4.3.4 Illustration: A Weibull regression model on marital statusand survival among older Americans 4.4 Log-Iogistic regression models 4.4.1 Specifications of the log-logistic AFI' regressionmodel 4.4.2 Retransformation of AFT parameters to untransformedlog-logistic parameters 4.4.3 Illustration: The log-logistic regression model on mar:italstatus and survival among the oldest old Americans 4.5 Other parametric regression models 4.5.1 The lognormal regression model 4.5.2 Gamma distributed regression models 4.6 Parametric regression models with interval censoring 4.6.1 Inference of parametric regression models with intervalcensoring 4.6.2 Illustration: A parametric survival model with independentinterval censoring 4.7 Summary 5 The Cox proportional hazard regression model and advances 5.1 The Cox semi-parametric hazard model …… 6 Counting processes and diagnostics of the Cox model 7 Competing risks models and repeated events 8 Structural hazard rate regression models 9 Special topics Appendix A The delta method