注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書科學(xué)技術(shù)自然科學(xué)物理學(xué)雙曲混沌:一個(gè)物理學(xué)家的觀點(diǎn)

雙曲混沌:一個(gè)物理學(xué)家的觀點(diǎn)

雙曲混沌:一個(gè)物理學(xué)家的觀點(diǎn)

定 價(jià):¥69.00

作 者: (俄羅斯)庫(kù)茲涅佐夫 著
出版社: 高等教育出版社
叢編項(xiàng):
標(biāo) 簽: 物理學(xué) 票務(wù) 科學(xué)與自然

ISBN: 9787040319644 出版時(shí)間: 2011-09-01 包裝: 精裝
開本: 16開 頁(yè)數(shù): 317 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  《雙曲混沌:一個(gè)物理學(xué)家的觀點(diǎn)》從物理學(xué)而不是數(shù)學(xué)概念的角度介紹了目前動(dòng)力系統(tǒng)中均勻雙曲吸引子研究的進(jìn)展小結(jié)構(gòu)穩(wěn)定的吸引子表現(xiàn)出強(qiáng)烈的隨機(jī)性,但是對(duì)于動(dòng)力系統(tǒng)中函數(shù)和參數(shù)的變化不敏感?;陔p曲混沌的特征,《雙曲混沌:一個(gè)物理學(xué)家的觀點(diǎn)》將展示如何找到物理系統(tǒng)中的雙曲混沌吸引子,以及怎樣設(shè)計(jì)具有雙曲混沌的物理系統(tǒng)?!峨p曲混沌:一個(gè)物理學(xué)家的觀點(diǎn)》可以作為研究生和高年級(jí)本科生教材,也可以供大學(xué)教授以及物理學(xué)、機(jī)械學(xué)和工程學(xué)相關(guān)研究人員參考。

作者簡(jiǎn)介

  Kuznetsov博士是非線性和混沌動(dòng)力學(xué)方面的著名科學(xué)家。他是俄羅斯薩拉托夫國(guó)立大學(xué)非線性過(guò)程系的教授,已經(jīng)出版了三本混沌動(dòng)力學(xué)及其應(yīng)用方面的專著。

圖書目錄

Part 1 Basic Notions and Review
Dynamical Systems and Hyperbolicity
1.1 Dynamical systems: basic notions
1.1.1 Systems with continuous and discrete time, and their mutual relation
1.1.2 Dynamics in terms of phase fluid: Conservative and dissipative systems and attractors
1.1.3 Rough systems and structural stability
1.1.4 Lyapunov exponents and their computation
1.2 Model examples of chaotic attractors
1.2.1 Chaos in terms of phase fluid and baker's map
1.2.2 Smale-Williams solenoid
1.2.3 DA-attractor
1.2.4 Plykin type attractors
1.3 Notion of hyperbolicity
1.4 Content and conclusions of the hyperbolic theory
1.4.1 Cone criterion.
1.4.2 Instability
1.4.3 Transversal Cantor structure and Kaplan-Yorke dimension
1.4.4 Markov partition and symbolic dynamics
1.4.5 Enumerating of orbits and topological entropy
1.4.6 Structural stability
1.4.7 Invariant measure of Sinai-Ruelle-Bowen
1.4.8 Shadowing and effect of noise
1.4.9 Ergodicity and mixing
1.4.10 Kolmogorov-Sinai entropy
References
2 Possible Occurrence of Hyperbolic Attractors
2.1 The Newhouse-Ruelle-Takens theorem and its relation to the uniformly hyperbolic attractors
2.2 Lorenz model and its modifications
2.3 Some maps with uniformly hyperbolic attractors
2.4 From DA to the Plykin type attractor
2.5 Hunt's example: Suspending the Plykin type attractor
2.6 The triple linkage: A mechanical system with hyperbolic dynamics
2.7 A possible occurrence of a Plykin type attractor in Hindmarsh-Rose neuron model
2.8 Blue sky catastrophe and birth of the Smale-Williams attractor
2.9 Taffy-pulling machine
References
Part 2 Low-Dimensional Models
Kicked Mechanical Models and Differential Equations with Periodic Switch
3.1 Smale-Williams solenoid in mechanical model: Motion of a particle on a plane under periodic kicks
3.2 A set of switching differential equations with attractor of Smale-Williams type
3.3 Explicit dynamical system with attractor of Plykin type
3.3.1 Plykin type attractor on a sphere
3.3.2 Plykin type attractor on the plane
3.4 Plykin-like attractor in smooth non-autonomous system
References
Non-Autonomous Systems of Coupled Serf-Oscillators
4.1 Van der Pol oscillator
4.2 Smale-Williams attractor in a non-autonomous system of alternately excited van der Pol oscillators
4.3 System of alternately excited van der Pol oscillators in terms of slow complex amplitudes
4.4 Non-resonance excitation transfer
4.5 Plykin-like attractor in non-autonomous coupled oscillators
4.5.1 Representation of states on a sphere and equations of the model
4.5.2 Numerical results for the coupled oscillators
References
5 Autonomous Low-dimensional Systems with Uniformly Hyperbolic
Attractors in the Poincar~ Maps
5.1 Autonomous system of two coupled oscillators with self-regulating alternating excitation
……
Part 3 Higher-Dimensional Systems and Phenomena
Part 4 Experimental Studies

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)