注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當前位置: 首頁出版圖書科學技術(shù)自然科學物理學熵、大偏差和統(tǒng)計力學

熵、大偏差和統(tǒng)計力學

熵、大偏差和統(tǒng)計力學

定 價:¥49.00

作 者: (美)艾里斯 著
出版社: 世界圖書出版公司
叢編項:
標 簽: 理論物理學

ISBN: 9787510035111 出版時間: 2011-06-01 包裝: 平裝
開本: 24開 頁數(shù): 364 字數(shù):  

內(nèi)容簡介

  《熵、大偏差和統(tǒng)計力學》是一部教程,內(nèi)容上相對獨立,自成體系。書中大偏差的講述除了為這科目做出了巨大貢獻,也將統(tǒng)計力學的好多方面完美結(jié)合,并且很具有數(shù)學吸引力。而且作者在沒有假設讀者具有豐富的物理知識背景下講述,使得本書能夠讓更多的讀者學習理解。每章末都附有一節(jié)注解和一節(jié)問題,這100來道練習題,附有許多提示,使得本書更加易于學習理解。目次:(第一部分)大偏差和統(tǒng)計力學:大偏差導論;大偏差性質(zhì)和積分漸近;大偏差和離散理想氣體;z上的鐵磁模型;zd和圓周上的磁模型;(第二部分)大偏差定理上的復雜度和證明:復函數(shù)和legendre-fenchel變換;大偏差的隨機向量;i. i. d.隨機變量的2級大偏差;i. i. d.隨機變量的3級大偏差;附錄:概率論;ii.7中兩個定理的證明;自旋系統(tǒng)中無限體積測度的等價觀點;特殊gibbs自由能量的存在性。讀者對象:數(shù)學專業(yè)的研究生,教師和相關專業(yè)的科研人員。

作者簡介

暫缺《熵、大偏差和統(tǒng)計力學》作者簡介

圖書目錄

preface
comments on the use of this book
part i: large deviations and statistical mechanics
chapter i. introduction to large deviations
  i.1. overview
  i.2. large deviations for 1.i.d. random variables with afinite state space
  i.3. levels-1 and 2 for coin tossing
  i.4. levels-1 and 2 for i.i.d. random variables with afinite state space
  i.5. level-3: empirical pair measure
  i.6. level-3: empirical process
  i.7. notes
  i.8. problems
chapter ii. large deviation property and asymptotics ofintegrals
  ii.1. introduction
  ii.2. levels-l, 2, and 3 large deviations for i.i.d. randomvectors
  ii.3. the definition of large deviation property
  ii.4. statement of large deviation properties for levels-l,2, and 3
  ii.5. contraction principles
  ii.6. large deviation property for random vectors andexponential convergence
  ii.7. varadhan's theorem on the asymptotics ofintegrals
  ii.8. notes
  ii.9. problems
chapter iii. large deviations and the discrete ideal gas
  iii.1. introduction
  iii.2. physics prelude: thermodynamics
  iii.3. the discrete ideal gas and the microcanonicalensemble
  iii.4. thermodynamic limit, exponential convergence, andequilibrium values
  iii.5. the maxweli-boltzmann distribution andtemperature
  iii.6. the canonical ensemble and its equivalence with themicrocanonical ensemble
  iii.7. a derivation of a thermodynamic equation
  ill.8. the gibbs variational formula and principle
  iii.9. notes
  iii. 10. problems
chapter iv. ferromagnetic models on z
  iv.1. introduction
  iv.2. an overview of ferromagnetic models
  iv.3. finite-volume gibbs states on 77
  iv.4. spontaneous magnetization for the curie-weissmodel
  iv.5. spontaneous magnetization for general ferromagnetson
  iv.6. infinite-volume gibbs states and phasetransitions
  iv.7. the gibbs variational formula and principle
  iv.8. notes
  iv.9. problems
chapter v. magnetic models on 7/d and on the circle
  v.1. introduction
  v.2. finite-volume gibbs states on zd, d ≥ 1
  v.3. moment inequalities
  v.4. properties of the magnetization and the gibbs freeenergy
  v.5. spontaneous magnetization on z, d ≥ 2, via the peierlsargument
  v.6. infinite-volume gibbs states and phasetransitions
  v.7. infinite-volume gibbs states and the central limittheorem
  v.8. critical phenomena and the breakdown of the centrallimit theorem
  v.9. three faces of the curie-weiss model
  v. 10. the circle model and random waves
  v.11. a postscript on magnetic models
  v.12. notes
  v.13. problems
part ii: convexity and proofs of large deviation theorems
chapter vi. convex functions and the legendre-fencheltransform
  vii.1. introduction
  vi.2. basic definitions
  vi.3. properties of convex functions
  vi.4. a one-dimensional example pf the legendre-fencheltransform
  vi.5. the legendre-fenchel transform for convex functions onra
  vi.6. notes
  vi.7. problems
chapter vii. large deviations for random vectors
  vii. i. statement of results
  vii.2. properties of i
  vii.3. proof of the large deviation bounds for d = 1
  vii.4. proof of the large deviation bounds for d≥ 1
  vii.5. level-i large deviations for i.i.d. randomvectors
  vii.6. exponential convergence and proof of theoremii.6.3
  vii.7. notes
  vii.8. problems
chapter viii. level-2 large deviations for i.i.d. randomvectors
  viii. 1. introduction
  viii.2. the level-2 large deviation theorem
  viii.3. the contraction principle relating levels-i and 2 (d= 1)
  viii.4. the contraction principle relating levels-1 and 2 (d≥ 2)
  viii.5. notes
  viii.6. problems
chapter ix. level-3 large deviations for i.i.d. randomvectors
  ix. 1. statement of results
  ix.2. properties of the level-3 entropy function
  ix.3. contraction principles
  ix.4. proof of the level-3 large deviation bounds
  ix.5. notes
  ix.6. problems
appendices
appendix a: probability
  a.1. introduction
  a.2. measurability
  a.3. product spaces
  a.4. probability measures and expectation
  a.5. convergence of random vectors
  a.6. conditional expectation, conditional probability, andregular conditional distribution
  a.7. the koimogorov existence theorem
  a.8. weak convergence of probability measures on a metricspace
  a.9. the space ms((rd)z) and the ergodic theorem
  a.10. n-dependent markov chains
  a.11. probability measures on the space { 1, - 1}zd
appendix b: proofs of two theorems in section ii.7
  b.i. proof of theorem ii.7.1
  b.2. proof of theorem ii.7.2
appendix c: equivalent notions of infinite-volume measures for spinsystems
  c.i. introduction
  c.2. two-body interactions and infinite-volume gibbsstates
  c.3. many-body interactions and infinite-volume gibbsstates
  c.4. dlr states
  c.5. the gibbs variational formula and principle
  c.6. solution of the gibbs variational formula forfinite-range interactions on z
appendix d: existence of the specific gibbs free energy
  d.1. existence along hypercubes
  d.2. an extension
  list of frequently used symbols
  references
  author index
  subject index  

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號