注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書科學(xué)技術(shù)自然科學(xué)物理學(xué)不連續(xù)及連續(xù)系統(tǒng)中的分岔和混沌(英文版)

不連續(xù)及連續(xù)系統(tǒng)中的分岔和混沌(英文版)

不連續(xù)及連續(xù)系統(tǒng)中的分岔和混沌(英文版)

定 價(jià):¥89.00

作 者: (斯洛伐克)費(fèi)坎 著
出版社: 高等教育出版社
叢編項(xiàng):
標(biāo) 簽: 理論物理學(xué)

ISBN: 9787040315332 出版時(shí)間: 2011-03-01 包裝: 精裝
開本: 16開 頁數(shù): 378 字?jǐn)?shù):  

內(nèi)容簡介

  本書利用泛函分析工具來談?wù)摶煦缗c分岔,并提供簡明扼要的數(shù)學(xué)證明。書中通過許多有趣、經(jīng)典的例子展示了其具體的應(yīng)用。本書研究了大量的非線性問題,包括非線性差分方程、常微分方程和偏微分方程、脈沖微分方程、分段光滑微分方程及在無限格上的微分方程等。本書可供對非線性機(jī)械系統(tǒng)的振動、弦或梁的擺動以及應(yīng)用動力系統(tǒng)中分岔方法來研究電路等問題感興趣的數(shù)學(xué)家、物理學(xué)家、工程師及相關(guān)專業(yè)研究生等參考。

作者簡介

暫缺《不連續(xù)及連續(xù)系統(tǒng)中的分岔和混沌(英文版)》作者簡介

圖書目錄

1 Introduction
  References
2 Preliminary Results
  2.1 Linear Functional Analysis
  2.2 Nonlinear Functional Analysis
    2.2.1 Banach Fixed Point Theorem
    2.2.2 Implicit Function Theorem
    2.2.3 Lyapunov-Schmidt Method
    2.2.4 Brouwer Degree
    2.2.5 Local Invertibility
    2.2.6 Global Invertibility
  2.3 Multivalued Mappings
  2.4 Differential Topology
    2.4.1 Differentiable Manifolds
    2.4.2 Vector Bundles
    2.4.3 Tubular Neighbourhoods
  2.5 Dynamical Systems
    2.5.1 Homogenous Linear Equations
    2.5.2 Chaos in Diffeomorphisms
    2.5.3 Periodic ODEs
    2.5.4 Vector Fields
    2.5.5 Global Center Manifolds
    2.5.6 Two-Dimensional Flows
    2.5.7 Averaging Method
    2.5.8 Carath6odory Type ODEs
  2.6 Singularities of Smooth Maps
    2.6.1 Jet Bundles
    2.6.2 Whitney C~O Topology
    2.6.3 Transversality
    2.6.4 Malgrange Preparation Theorem
    2.6.5 Complex Analysis
  References
3 Chaos in Discrete Dynamical Systems
  3.1 Transversal Bounded Solutions
    3.1.1 Difference Equations
    3.1.2 Variational Equation
    3.1.3 Perturbation Theory
    3.1.4 Bifurcation from a Manifold of HomoclinicSolutions
    3.1.5 Applications to Impulsive DifferentialEquations
  3.2 Transversal Homoclinic Orbits
    3.2.1 Higher Dimensional DifferenceEquations
    3.2.2 Bifurcation Result
    3.2.3 Applications to McMillan TypeMappings
    3.2.4 Planar Integrable Maps withSeparatrices
  3.3 Singular Impulsive ODEs
    3.3.1 Singular ODEs with Impulses
    3.3.2 Linear Singular ODEs with Impulses
    3.3.3 Derivation of the Melnikov Function
    3.3.4 Examples of Singular Impulsive ODEs
  3.4 Singularly Perturbed Impulsive ODEs
    3.4.1 Singularly Perturbed ODEs withimpulses
    3.4.2 Melnikov Function
    3.4.3 Second Order Singularly Perturbed ODEswith Impulses
  3.5 Inflated Deterministic Chaos
    3.5.1 Inflated Dynamical Systems
    3.5.2 Inflated Chaos
  References
4 Chaos in Ordinary Differential Equations
  4.1 Higher Dimensional ODEs
    4.1.1 Parameterized Higher DimensionalODEs
    4.1.2 Variational Equations
    4.1.3 Melnikov Mappings
    4.1.4 The Second Order Melnikov Function
    4.1.5 Application to Periodically PerturbedODEs
  4.2 ODEs with Nonresonant Center Manifolds
    4.2.1 Parameterized Coupled Oscillators
    4.2.2 Chaotic Dynamics on the HyperbolicSubspace
    4.2.3 Chaos in the Full Equation
    4.2.4 Applications to Nonlinear ODEs
  4.3 ODEs with Resonant Center Manifolds
    4.3.1 ODEs with Saddle-Center Parts
    4.3.2 Example of Coupled Oscillators atResonance
    4.3.3 General Equations
    4.3.4 Averaging Method
  4.4 Singularly Perturbed and Forced ODEs
    4.4.1 Forced Singular ODEs
    4.4.2 Center Manifold Reduction
    4.4.3 ODEs with Normal and Slow Variables
    4.4.4 Homoclinic Hopf Bifurcation
  4.5 Bifurcation from Degenerate Homoclinics
    4.5.1 Periodically Forced ODEs with DegenerateHomoclinics...
    4.5.2 Bifurcation Equation
    4.5.3 Bifurcation for 2-Parametric Systems
    4.5.4 Bifurcation for 4-Parametric Systems
    4.5.5 Autonomous Perturbations
  4.6 Inflated ODEs
    4.6.1 Inflated Carathtodory Type ODEs
    4.6.2 Inflated Periodic ODEs
    4.6.3 Inflated Autonomous ODEs
  4.7 Nonlinear Diatomic Lattices
    4.7.1 Forced and Coupled NonlinearLattices
    4.7.2 Spatially Localized Chaos
  References
5 Chaos in Partial Differential Equations
  5.1 Beams on Elastic Bearings
    5.1.1 Weakly Nonlinear Beam Equation
    5.1.2 Setting of the Problem
    5.1.3 Preliminary Results
    5.1.4 Chaotic Solutions
    5.1.5 Useful Numerical Estimates
    5.1.6 Lipschitz Continuity
  5.2 Infinite Dimensional Non-Resonant Systems
    5.2.1 Buckled Elastic Beam
    5.2.2 Abstract Problem
    5.2.3 Chaos on the Hyperbolic Subspace
    5.2.4 Chaos in the Full Equation
    5.2.5 Applications to Vibrating ElasticBeams
    5.2.6 Planer Motion with One Buckled Mode
    5.2.7 Nonplaner Symmetric Beams
    5.2.8 Nonplaner Nonsymmetric Beams
    5.2.9 Multiple Buckled Modes
  5.3 Periodically Forced Compressed Beam
    5.3.1 Resonant Compressed Equation
    5.3.2 Formulation of Weak Solutions
    5.3.3 Chaotic Solutions
  References
6 Chaos in Discontinuous Differential Equations
  6.1 Transversal Homoclinic Bifurcation
    6.1.1 Discontinuous Differential Equations
    6.1.2 Setting of the Problem
    6.1.3 Geometric Interpretation of NondegeneracyCondition..
    6.1.4 Orbits Close to the Lower HomoclinicBranches
    6.1.5 Orbits Close to the Upper HomoclinicBranch
    6.1.6 Bifurcation Equation
    6.1.7 Chaotic Behaviour
    6.1.8 Almost and Quasiperiodic Cases
    6.1.9 Periodic Case
    6.1.10 Piecewise Smooth Planar Systems
    6.1.11 3D Quasiperiodic Piecewise LinearSystems
    6.1.12 Multiple Transversal Crossings
  6.2 Sliding Homoclinic Bifurcation
    6.2.1 Higher Dimensional SlidingHomoclinics
    6.2.2 Planar Sliding Homoclinics
    6.2.3 Three-Dimensional SlidingHomoclinics
  6.3 Outlook
  References
7 Concluding Related Topics
  7.1 Notes on Melnikov Function
    7.1.1 Role of Melnikov Function
    7.1.2 Melnikov Function and Calculus ofResidues
    7.1.3 Second Order ODEs
    7.1.4 Applications and Examples
  7.2 Transverse Heteroclinic Cycles
  7.3 Blue Sky Catastrophes
    7.3.1 Symmetric Systems with FirstIntegrals
    7.3.2 D'Alembert and Penalized Equations
  References
Index

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號