注冊(cè) | 登錄讀書(shū)好,好讀書(shū),讀好書(shū)!
讀書(shū)網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書(shū)科學(xué)技術(shù)計(jì)算機(jī)/網(wǎng)絡(luò)數(shù)據(jù)庫(kù)數(shù)據(jù)庫(kù)挖掘/數(shù)據(jù)倉(cāng)庫(kù)Clementine數(shù)據(jù)挖掘方法及應(yīng)用

Clementine數(shù)據(jù)挖掘方法及應(yīng)用

Clementine數(shù)據(jù)挖掘方法及應(yīng)用

定 價(jià):¥38.00

作 者: 薛薇 等編著
出版社: 電子工業(yè)出版社
叢編項(xiàng):
標(biāo) 簽: 數(shù)據(jù)倉(cāng)庫(kù)與數(shù)據(jù)挖掘

購(gòu)買(mǎi)這本書(shū)可以去


ISBN: 9787121117787 出版時(shí)間: 2010-09-01 包裝: 平裝
開(kāi)本: 16開(kāi) 頁(yè)數(shù): 303 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  《Clementine數(shù)據(jù)挖掘方法及應(yīng)用》以數(shù)據(jù)挖掘的實(shí)踐過(guò)程為主線,通過(guò)生動(dòng)的應(yīng)用案例,從數(shù)據(jù)挖掘?qū)嵤┙嵌?,系統(tǒng)介紹了經(jīng)典的數(shù)據(jù)挖掘方法和利用Clementine實(shí)現(xiàn)數(shù)據(jù)挖掘的全部過(guò)程,講解方法從易到難,說(shuō)明問(wèn)題從淺至深?!禖lementine數(shù)據(jù)挖掘方法及應(yīng)用》力求以最通俗的方式闡述數(shù)據(jù)挖掘方法的核心思想與基本原理,同時(shí)配合Clementine軟件操作的說(shuō)明,希望讀者能夠直觀了解方法本質(zhì),盡快掌握Clementine軟件使用,并應(yīng)用到數(shù)據(jù)挖掘?qū)嵺`中。為方便讀者學(xué)習(xí),書(shū)中所有數(shù)據(jù)和案例均與所附光盤(pán)內(nèi)容一致?!禖lementine數(shù)據(jù)挖掘方法及應(yīng)用》適合于從事數(shù)據(jù)分析各應(yīng)用領(lǐng)域的讀者,尤其適合于商業(yè)管理、財(cái)政經(jīng)濟(jì)、金融保險(xiǎn)、社會(huì)研究、人文教育等行業(yè)的相關(guān)人員。同時(shí),也能夠作為高等院校計(jì)算機(jī)類(lèi)、財(cái)經(jīng)類(lèi)、管理類(lèi)專(zhuān)業(yè)本科生和研究生的數(shù)據(jù)挖掘教材。數(shù)據(jù)挖掘是當(dāng)前數(shù)據(jù)分析領(lǐng)域中最活躍最前沿的地帶。Clementine充分利用計(jì)算機(jī)系統(tǒng)的運(yùn)算處理能力和圖形展現(xiàn)能力,將數(shù)據(jù)挖掘方法、應(yīng)用與工具有機(jī)地融為一體,成為內(nèi)容最為全面,功能最為強(qiáng)大的數(shù)據(jù)挖掘軟件產(chǎn)品,是解決數(shù)據(jù)挖掘問(wèn)題的最理想工具。

作者簡(jiǎn)介

暫缺《Clementine數(shù)據(jù)挖掘方法及應(yīng)用》作者簡(jiǎn)介

圖書(shū)目錄

第1章 數(shù)據(jù)挖掘和Clementine概述
1.1 數(shù)據(jù)挖掘的產(chǎn)生背景
1.1.1 海量數(shù)據(jù)的分析需求催生數(shù)據(jù)挖掘
1.1.2 應(yīng)用對(duì)理論的挑戰(zhàn)催生數(shù)據(jù)挖掘
1.2 什么是數(shù)據(jù)挖掘
1.2.1 數(shù)據(jù)挖掘的概念
1.2.2 數(shù)據(jù)挖掘能做什么
1.2.3 數(shù)據(jù)挖掘得到的知識(shí)形式
1.2.4 數(shù)據(jù)挖掘的算法分類(lèi)
1.3 Clementine軟件概述
1.3.1 Clementine的窗口
1.3.2 數(shù)據(jù)流的基本管理和執(zhí)行
1.3.3 數(shù)據(jù)流的其他管理
1.3.4 從一個(gè)示例看Clementine的使用
第2章 Clementine數(shù)據(jù)的讀入
2.1 變量的類(lèi)型
2.1.1 從數(shù)據(jù)挖掘角度看變量類(lèi)型
2.1.2 從數(shù)據(jù)存儲(chǔ)角度看變量類(lèi)型
2.2 讀入數(shù)據(jù)
2.2.1 讀自由格式的文本文件
2.2.2 讀Excel電子表格數(shù)據(jù)
2.2.3 讀SPSS格式文件
2.2.4 讀數(shù)據(jù)庫(kù)文件
2.3 生成實(shí)驗(yàn)方案數(shù)據(jù)
2.4 合并數(shù)據(jù)
2.4.1 數(shù)據(jù)的縱向合并
2.4.2 數(shù)據(jù)的橫向合并
第3章 Clementine變量的管理
3.1 變量說(shuō)明
3.1.1 取值范圍和缺失值的說(shuō)明
3.1.2 變量取值有效性檢查和修正
3.1.3 變量角色的說(shuō)明
3.2 變量值的重新計(jì)算
3.2.1 CLEM表達(dá)式
3.2.2 變量值重新計(jì)算示例
3.3 變量類(lèi)別值的調(diào)整
3.4 生成新變量
3.5 變量值的離散化處理
3.5.1 常用的分箱方法
3.5.2 變量值的離散化處理示例
3.6 生成樣本集分割變量
3.6.1 樣本集分割的意義和常見(jiàn)方法
3.6.2 生成樣本集分割變量的示例
第4章 Clementine樣本的管理
4.1 樣本的排序
4.2 樣本的條件篩選
4.3 樣本的隨機(jī)抽樣
4.4 樣本的濃縮處理
4.5 樣本的分類(lèi)匯總
4.6 樣本的平衡處理
4.7 樣本的其他管理
4.7.1 數(shù)據(jù)轉(zhuǎn)置
4.7.2 數(shù)據(jù)的重新組織
第5章 Clementine數(shù)據(jù)的基本分析
5.1 數(shù)據(jù)質(zhì)量的探索
5.1.1 數(shù)據(jù)的基本描述與質(zhì)量探索
5.1.2 離群點(diǎn)和極端值的修正
5.1.3 缺失值的替補(bǔ)
5.1.4 數(shù)據(jù)質(zhì)量管理的其他功能
5.2 基本描述分析
5.2.1 計(jì)算基本描述統(tǒng)計(jì)量
5.2.2 繪制散點(diǎn)圖
5.3 變量分布的探索
5.4 兩分類(lèi)變量相關(guān)性的研究
5.4.1 兩分類(lèi)變量相關(guān)性的圖形分析
5.4.2 兩分類(lèi)變量相關(guān)性的數(shù)值分析
5.5 兩總體的均值比較
5.5.1 兩總體均值比較的圖形分析
5.5.2 獨(dú)立樣本的均值檢驗(yàn)
5.5.3 配對(duì)樣本的均值檢驗(yàn)
5.6 變量重要性的分析
5.6.1 變量重要性分析的一般方法
5.6.2 變量重要性分析的應(yīng)用示例
第6章 分類(lèi)預(yù)測(cè):Clementine的決策樹(shù)
6.1 決策樹(shù)算法概述
6.1.1 什么是決策樹(shù)
6.1.2 決策樹(shù)的幾何理解
6.1.3 決策樹(shù)的核心問(wèn)題
6.2 Clementine的C5.0算法及應(yīng)用
6.2.1 信息熵和信息增益
6.2.2 C5.0的決策樹(shù)生長(zhǎng)算法
6.2.3 C5.0的剪枝算法
6.2.4 C5.0的推理規(guī)則集
6.2.5 C5.0的基本應(yīng)用示例
6.2.6 C5.0的損失矩陣和Boosting技術(shù)
6.2.7 C5.0的模型評(píng)價(jià)
6.2.8 C5.0的其他話題:推理規(guī)則、交叉驗(yàn)證和未剪枝的決策樹(shù)
6.3 Clementine的分類(lèi)回歸樹(shù)及應(yīng)用
6.3.1 分類(lèi)回歸樹(shù)的生長(zhǎng)過(guò)程
6.3.2 分類(lèi)回歸樹(shù)的剪枝過(guò)程
6.3.3 損失矩陣對(duì)分類(lèi)樹(shù)的影響
6.3.4 分類(lèi)回歸樹(shù)的基本應(yīng)用示例
6.3.5 分類(lèi)回歸樹(shù)的交互建模
6.3.6 分類(lèi)回歸樹(shù)的模型評(píng)價(jià)
6.4 Clementine的CHAID算法及應(yīng)用
6.4.1 CHAID分組變量的預(yù)處理和選擇策略
6.4.2 Exhaustive CHAID算法
6.4.3 CHAID的剪枝
6.4.4 CHAID的應(yīng)用示例
6.5 Clementine的QUEST算法及應(yīng)用
6.5.1 QUEST算法確定最佳分組變量和分割點(diǎn)的方法
6.5.2 QUEST算法的應(yīng)用示例
6.6 決策樹(shù)算法評(píng)估的圖形比較
6.6.1 不同模型的誤差對(duì)比
6.6.2 不同模型收益的對(duì)比
第7章 分類(lèi)預(yù)測(cè):Clementine的人工神經(jīng)網(wǎng)絡(luò)
7.1 人工神經(jīng)網(wǎng)絡(luò)算法概述
7.1.1 人工神經(jīng)網(wǎng)絡(luò)的概念和種類(lèi)
7.1.2 人工神經(jīng)網(wǎng)絡(luò)中的節(jié)點(diǎn)和意義
7.1.3 人工神經(jīng)網(wǎng)絡(luò)建立的一般步驟
7.2 Clementine的B-P反向傳播網(wǎng)絡(luò)
7.2.1 感知機(jī)模型
7.2.2 B-P反向傳播網(wǎng)絡(luò)的特點(diǎn)
7.2.3 B-P反向傳播算法
7.2.4 B-P反向傳播網(wǎng)絡(luò)的其他問(wèn)題
7.3 Clementine的B-P反向傳播網(wǎng)絡(luò)的應(yīng)用
7.3.1 基本操作說(shuō)明
7.3.2 計(jì)算結(jié)果說(shuō)明
7.3.3 提高模型預(yù)測(cè)精度
7.4 Clementine的徑向基函數(shù)網(wǎng)絡(luò)及應(yīng)用
7.4.1 徑向基函數(shù)網(wǎng)絡(luò)中的隱節(jié)點(diǎn)和輸出節(jié)點(diǎn)
7.4.2 徑向基函數(shù)網(wǎng)絡(luò)的學(xué)習(xí)過(guò)程
7.4.3 徑向基函數(shù)網(wǎng)絡(luò)的應(yīng)用示例
第8章 分類(lèi)預(yù)測(cè):Clementine的統(tǒng)計(jì)方法
8.1 Clementine的Logistic回歸分析及應(yīng)用
8.1.1 二項(xiàng)Logistic回歸方程
8.1.2 二項(xiàng)Logistic回歸方程系數(shù)的含義
8.1.3 二項(xiàng)Logistic回歸方程的檢驗(yàn)
8.1.4 二項(xiàng)Logistic回歸分析的應(yīng)用示例
8.1.5 多項(xiàng)Logistic回歸分析的應(yīng)用示例
8.2 Clementine的判別分析及應(yīng)用
8.2.1 距離判別法
8.2.2 Fisher判別法
8.2.3 貝葉斯判別法
8.2.4 判別分析的應(yīng)用示例
第9章 探索內(nèi)部結(jié)構(gòu):Clementine的關(guān)聯(lián)分析
9.1 簡(jiǎn)單關(guān)聯(lián)規(guī)則及其有效性
9.1.1 簡(jiǎn)單關(guān)聯(lián)規(guī)則的基本概念
9.1.2 簡(jiǎn)單關(guān)聯(lián)規(guī)則的有效性和實(shí)用性
9.2 Clementine的Apriori算法及應(yīng)用
9.2.1 產(chǎn)生頻繁項(xiàng)集
9.2.2 依據(jù)頻繁項(xiàng)集產(chǎn)生簡(jiǎn)單關(guān)聯(lián)規(guī)則
9.2.3 Apriori算法的應(yīng)用示例
9.3 Clementine的GRI算法及應(yīng)用
9.3.1 GRI算法基本思路
9.3.2 GRI算法的具體策略
9.3.3 GRI算法的應(yīng)用示例
9.4 Clementine的序列關(guān)聯(lián)及應(yīng)用
9.4.1 序列關(guān)聯(lián)中的基本概念
9.4.2 Sequence算法
9.4.3 序列關(guān)聯(lián)的時(shí)間約束
9.4.4 序列關(guān)聯(lián)分析的應(yīng)用示例
第10章 探索內(nèi)部結(jié)構(gòu):Clementine的聚類(lèi)分析
10.1 聚類(lèi)分析的一般問(wèn)題
10.1.1 聚類(lèi)分析的提出
10.1.2 聚類(lèi)分析的算法
10.2 Clementine的K-Means聚類(lèi)及應(yīng)用
10.2.1 K-Means對(duì)“親疏程度”的測(cè)度
10.2.2 K-Means聚類(lèi)過(guò)程
10.2.3 K-Means聚類(lèi)的應(yīng)用示例
10.3 Clementine的兩步聚類(lèi)及應(yīng)用
10.3.1 兩步聚類(lèi)對(duì)“親疏程度”的測(cè)度
10.3.2 兩步聚類(lèi)過(guò)程
10.3.3 聚類(lèi)數(shù)目的確定
10.3.4 兩步聚類(lèi)的應(yīng)用示例
10.4 Clementine的Kohonen網(wǎng)絡(luò)聚類(lèi)及應(yīng)用
10.4.1 Kohonen網(wǎng)絡(luò)的聚類(lèi)機(jī)理
10.4.2 Kohonen網(wǎng)絡(luò)的聚類(lèi)過(guò)程
10.4.3 Kohonen網(wǎng)絡(luò)聚類(lèi)的示例
10.5 基于聚類(lèi)分析的離群點(diǎn)探索及應(yīng)用
10.5.1 多維空間基于聚類(lèi)的診斷方法
10.5.2 多維空間基于聚類(lèi)的診斷方法應(yīng)用示例
參考文獻(xiàn)

本目錄推薦

掃描二維碼
Copyright ? 讀書(shū)網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)