注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁(yè)出版圖書科學(xué)技術(shù)自然科學(xué)物理學(xué)計(jì)算物理簡(jiǎn)明教程(英文版)

計(jì)算物理簡(jiǎn)明教程(英文版)

計(jì)算物理簡(jiǎn)明教程(英文版)

定 價(jià):¥29.00

作 者: 張海燕 編著
出版社: 上海交通大學(xué)出版社
叢編項(xiàng):
標(biāo) 簽: 理論物理學(xué)

ISBN: 9787313066688 出版時(shí)間: 2010-08-01 包裝: 平裝
開(kāi)本: 16開(kāi) 頁(yè)數(shù): 259 字?jǐn)?shù):  

內(nèi)容簡(jiǎn)介

  《計(jì)算物理簡(jiǎn)明教程》介紹了“計(jì)算物理”學(xué)科中的幾種基本常用方法,具體內(nèi)容包括:誤差分析、有限差分和內(nèi)插法、數(shù)值積分方法、矩陣算法、常微分方程差分解法、偏微分方程解法、蒙特卡羅模擬方法等?!队?jì)算物理簡(jiǎn)明教程》可供物理專業(yè)的本科生作為“計(jì)算物理”課程教材使用,也可供從事數(shù)值計(jì)算的相關(guān)專業(yè)的研究生參考。

作者簡(jiǎn)介

暫缺《計(jì)算物理簡(jiǎn)明教程(英文版)》作者簡(jiǎn)介

圖書目錄

1 Approximations, Errors and the Taylor Series
1.1 Approximations and Errors
1.1.1 Approximations
1.1.2 Round-off Errors
1.1.3 Principles to Hold During the Numerical Calculations
1.2 Truncation Errors and the Taylor Series
1.2.1 Truncation Errors
1.2.2 The Taylor Series
1.2.3 Some Techniques in Numerical Computation
1.3 Control of Total Numerical Error
1.3.1 Truncation Error
1.3.2 Total Numerical Error
1.3.3 Control of Numerical Errors
1.4 Problems for Chapter 1
1.5 Computer Work for Chapter 1
2 Interpolation and Finite Differences
2.1 Finite Difference
2.2 Newton Interpolation
2.2.1 Basis Functions
2.2.2 Newton Interpolation
2.2.3 Newton's Divided-difference Interpolating Polynomial
2.2.4 Errors of Newton Interpolation
2.3 Interpolation Formulae
2.3.1 NGF Interpolation
2.3.2 NGB Interpolation
2.3.3 ST Interpolation
2.4 Difference Quotients
2.4.1 DNGF Formulae
2.4.2 DNGB Formulae
2.4.3 DST Formulae
2.5 Problems for Chapter 2
2.6 Computer Work for Chapter 2
3 Numerical Integration
3.1 Numerical Integration Methods
3.2 Newton-Cotes Quadrature Rules
3.2.1 The Trapezoid Rule
3.2.2 Simpson's Rule
3.2.3 Error Estimation
3.3 Composite and Adaptive Quadrature
3.3.1 Composite Quadrature Rules
3.3.2 Automatic and Adaptive Quadrature
3.4 Numerical Integration of Multi-dimensional Integrals
3.5 Problems for Chapter 3
3.6 Computer Work for Chapter 3
4 Matrix Algebra
4.1 Types of Matrices
4.2 Gauss Elimination and Back Substitution
4.2.1 The Elimination of Unknowns
4.2.2 The Algorithm of Gauss Elimination and Back Substitution
4.2.3 Techniques for Improving Solutions
4.3 LU Decomposition and Matrix Inversion
4.3.1 Overview of LU Decomposition
4.3.2 LU Decomposition Algorithm
4.3.3 Procedure from Gauss Elimination
4.3.4 The Matrix Inverse and Error Analysis
4.4 Tridiagonal Matrices and Recursion Method
4.4.1 Tri-diagonal Systems
4.4.2 Recursion Method
4.5 Iterative Methods
4.6 Jacobi Method
4.6.1 The Algorithm
4.6.2 The Convergency
4.7 Gauss-Seidel Method(GS)
4.7.1 The Algorithm
4.7.2 The Convergency
4.8 Successive Over-Relaxation Method(SOR)
4.9 Conjugate Gradient Method(CG)
4.9.1 The Gradient
4.9.2 Steepest Descent Method
4.9.3 CG Method
4.10 Problems for Chapter 4
4.11 Computer Work for Chapter 4
5 Ordinary Differential Equations
5.1 Types of Differential Equations
5.2 Euler Method
5.2.1 Error Analysis
5.2.2 Stability
5.2.3 Application to Vector Equations
5.3 The Leapfrog Methods
5.3.1 Stability Analysis
5.3.2 GeneraliZation to Multi-step Scheme
5.4 Implicit Methods
5.4.1 The Most Fundamental Scheme
5.4.2 Implicit Scheme of Second Order -- Improved Euler Method
5.5 The Runge-Kutta Method
5.5.1 The Basic Idea of Runge-Kutta Method
5.5.2 Stability Analysis
5.5.3 Adaptive RK Method
5.6 Predictor-Corrector(PC) Method
5.7 Boundary Value Problems and Initial Value Problems of Second Order
5.7.1 Shooting Method
5.7.2 Numerov's Method
5.8 Problems for Chapter 5
5.9 Computer Work for Chapter 5
6 Partial Differential Equations
6.1 Types of Equations
6.2 Elliptic Equations
6.2.1 Two or More Dimensions
6.2.2 ADI (alternating direction implicit) Method
6.3 Hyperbolic Equations
6.3.1 The FTCS Scheme
6.3.2 The Lax Scheme
6.3.3 Leapfrog Scheme
6.4 Parabolic Equations
6.4.1 A Simple Method -- FTCS Scheme
6.4.2 Implicit Scheme of First Order
6.4.3 Crank-Nicholson (CN) Scheme
6.5 Five-point Stencil for 2D Poisson Equation in Electromagnetic Field
6.6 Problems for Chapter 6
6.7 Computer Work for Chapter 6
7 Monte Carlo Methods and Simulation
7.1 Probability
7.1.1 Chance and Probability
7.1.2 A One-dimensional Random Walk
7.1.3 Probability Distribution
7.1.4 Random Variables
7.2 Random Number Generators
7.2.1 Linear Gongruential Generators
7.2.2 Shift Register Generators
7.3 Non-uniform Probability Distribution
7.3.1 Inverse Transform Method
7.3.2 Generalized Transformation Method -- Box-Muller Teehnique
7.4 Monte Carlo Integration
7.4.1 Splash Method (Hit or Miss Method)
7.4.2 Sample Mean Method
7.4.3 Two Theorems in Probability Theory
7.4.4 MC Error Analysis
7.4.5 Importanee Sampling Technique
7.5 Stoehastie Dynamics
7.5.1 Random Sequences
7.5.2 Stoehastie Dynamics
7.6 Monte Carlo Simulation and Ising Model
7.6.1 Simulation Methods
7.6.2 Random Walk Methods
7.6.3 The Ising Model
7.6.4 The Metropolis Algorithm
7.7 Problems for Chapter 7
7.8 Computer Work for Chapter 7
Bibliography

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)