注冊(cè) | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書教育/教材/教輔考試研究生入學(xué)考試考研數(shù)學(xué)客觀題簡化求解技巧分類歸納:高等數(shù)學(xué) 一

考研數(shù)學(xué)客觀題簡化求解技巧分類歸納:高等數(shù)學(xué) 一

考研數(shù)學(xué)客觀題簡化求解技巧分類歸納:高等數(shù)學(xué) 一

定 價(jià):¥28.80

作 者: 毛綱源 編著
出版社: 華中科技大學(xué)出版社
叢編項(xiàng):
標(biāo) 簽: 高等數(shù)學(xué)

ISBN: 9787560961354 出版時(shí)間: 2010-06-01 包裝: 平裝
開本: 16開 頁數(shù): 243 字?jǐn)?shù):  

內(nèi)容簡介

  本書以歷年考研數(shù)學(xué)真題中的客觀題(選擇題和填空題)為例,歸納、總結(jié)這類題型的簡化求解方法與技巧。這些方法與技巧不僅有助于快速、準(zhǔn)確地求解客觀題,而且對(duì)證明題和計(jì)算題的求解也能發(fā)揮重要的作用。讀者閱讀本書,必定會(huì)提高復(fù)習(xí)效率和應(yīng)試能力。

作者簡介

  毛綱源,教授,畢業(yè)于武漢大學(xué),留校任教,后調(diào)入武漢理工大學(xué)擔(dān)任數(shù)學(xué)物理系系主任,在高校從事數(shù)學(xué)教學(xué)與科研工作40余年,發(fā)表多篇考研數(shù)學(xué)論文,主講微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)課程。理論功底深厚,教學(xué)經(jīng)驗(yàn)豐富,思維獨(dú)特。現(xiàn)受聘于北京師范大學(xué)珠海分校教授,擔(dān)任數(shù)學(xué)的雙語教學(xué)工作。曾多次受邀在山東、廣東、湖北等地主講考研數(shù)學(xué),并得到學(xué)員的廣泛認(rèn)可和一致好評(píng):“知識(shí)淵博,講解深入淺出,易于接受”,“解題方法靈活,技巧獨(dú)特,輔導(dǎo)針對(duì)性極強(qiáng)”,“對(duì)考研數(shù)學(xué)的出題形式、考試重難點(diǎn)了如指掌,上他的輔導(dǎo)班受益匪淺”……同樣,毛老師的輔導(dǎo)書也受到讀者的歡迎與好評(píng),有興趣的讀者可以上網(wǎng)查詢有關(guān)對(duì)他編寫的圖書的評(píng)價(jià)。

圖書目錄

第1章 函數(shù)、極限、連續(xù)
1.1 函數(shù)及其性質(zhì)
1.1.1 求復(fù)合函數(shù)的表達(dá)式
1.1.2 求反函數(shù)的表達(dá)式
1.1.3 判別函數(shù)的有界性
1.1.4 判別函數(shù)的奇偶性
1.1.5 奇偶函數(shù)常用性質(zhì)的應(yīng)用
1.1.6 判別函數(shù)的單調(diào)性
1.1.7 判別函數(shù)的周期性
1.2 極限的求法
1.2.1 數(shù)列的極限
1.2.2 用等價(jià)無窮小代換求極限
1.2.3 用泰勒公式求極限
1.2.4 簡化計(jì)算“1∞”型冪指函數(shù)的極限
1.2.5 求子函數(shù)形式特殊的函數(shù)極限
1.2.6 比較或確定無窮小的階
1.2.7 由極限值確定待定常數(shù)
1.2.8 已知函數(shù)極限值,求與此極限有關(guān)的另一函數(shù)極限
1.3 函數(shù)的連續(xù)性
1.3.1 討論函數(shù)的連續(xù)性
1.3.2 討論用極限形式給出的函數(shù)的連續(xù)性、可導(dǎo)性
1.3.3 求間斷點(diǎn)及其類型
1.3.4 利用連續(xù)性確定待定常數(shù)
1.3.5 討論方程的實(shí)根
習(xí)題1
第2章 一元函數(shù)微分學(xué)
2.1 判別函數(shù)在某點(diǎn)的可導(dǎo)性
2.1.1 用導(dǎo)數(shù)定義判別函數(shù)在某點(diǎn)的可導(dǎo)性
2.1.2 利用特殊的分式極限式判別函數(shù)在某點(diǎn)可導(dǎo)
2.1.3 判別含絕對(duì)值的函數(shù)在某點(diǎn)的可導(dǎo)性
2.1.4 判別一類特殊的分段函數(shù)在分段點(diǎn)的可導(dǎo)性
2.1.5 利用導(dǎo)數(shù)定義求分式函數(shù)的極限
2.1.6 利用導(dǎo)數(shù)定義或?qū)?shù)存在的充要條件求函數(shù)的待定常數(shù)
2.2 計(jì)算導(dǎo)數(shù)
2.2.1 計(jì)算復(fù)合函數(shù)的導(dǎo)數(shù)
2.2.2 分段函數(shù)在分段點(diǎn)處的導(dǎo)數(shù)的求法
2.2.3 求反函數(shù)的導(dǎo)數(shù)
2.2.4 求隱函數(shù)的導(dǎo)數(shù)
2.2.5 求由參數(shù)方程■所確定的函數(shù)y=y(tǒng)(x)的導(dǎo)數(shù)
2.3 計(jì)算高階導(dǎo)數(shù)與微分
2.3.1 計(jì)算高階導(dǎo)數(shù)
2.3.2 函數(shù)微分的概念及其計(jì)算
2.4 微分中值定理的綜合應(yīng)用
2.4.1 利用微分中值定理的條件與結(jié)論求解客觀題
2.4.2 求解與函數(shù)差值有關(guān)的問題
2.4.3 討論導(dǎo)函數(shù)的變化趨勢(shì)與函數(shù)的變化趨勢(shì)的關(guān)系
2.5 討論函數(shù)的性態(tài)
2.5.1 討論函數(shù)的單調(diào)性并求其單調(diào)區(qū)間
2.5.2 判別某點(diǎn)是否為函數(shù)的極值點(diǎn)
2.5.3 討論曲線的凹凸性并求其凹凸區(qū)間與拐點(diǎn)
2.5.4 求函數(shù)的極值和最值
2.5.5 求曲線的漸近線
2.6 一元函數(shù)微分學(xué)的幾何應(yīng)用
2.6.1 求過曲線上一已知點(diǎn)的切(法)線方程
2.6.2 過不在曲線上的已知點(diǎn),求該曲線的切(法)線方程
2.6.3 求解與兩曲線相切的有關(guān)問題
2.6.4 求解與切線在坐標(biāo)軸上的截距有關(guān)的問題
2.6.5 計(jì)算曲率、曲率半徑與曲率圓
習(xí)題2
第3章 一元函數(shù)積分學(xué)
3.1 原函數(shù)與不定積分
3.1.1 原函數(shù)與不定積分的概念、性質(zhì)及其相互關(guān)系
3.1.2 求分段函數(shù)的積分
3.2 計(jì)算不定積分
3.2.1 用湊微分法(第一類換元積分法)計(jì)算不定積分
3.2.2 用第二類換元積分法計(jì)算積分
3.2.3 用分部積分法計(jì)算不定積分
3.2.4 用分項(xiàng)積分法計(jì)算不定積分
3.3 利用定積分定義求積和式的極限
3.3.1 求有一因式或能化為一因式為1/n的積和式的數(shù)列極限
3.3.2 求需將其放縮后能用定積分定義求和的積和式的極限
3.4 利用定積分的性質(zhì)計(jì)算定積分
3.4.1 利用定積分的幾何意義計(jì)算定積分
3.4.2 計(jì)算對(duì)稱區(qū)間上的定積分
3.4.3 計(jì)算周期函數(shù)的定積分
3.4.4 利用定積分的常用計(jì)算公式求定積分
3.4.5 已知被積函數(shù)的導(dǎo)數(shù)或被積函數(shù)含抽象函數(shù)的導(dǎo)數(shù),求其積分
3.4.6 求解含積分值為常數(shù)的函數(shù)方程
3.5 用換元法計(jì)算定積分
3.5.1 計(jì)算需改變被積函數(shù)的定積分
3.5.2 計(jì)算需同時(shí)改變積分限和被積函數(shù)的定積分
3.6 計(jì)算幾類需分子區(qū)間積分的定積分
3.6.1 計(jì)算分段函數(shù)的定積分
3.6.2 求被積函數(shù)含絕對(duì)值的定積分
3.6.3 求被積函數(shù)含最值符號(hào)max或min的定積分
3.6.4 計(jì)算被積函數(shù)含偶次算術(shù)方根的定積分
3.7 比較定積分的大小
3.8 求解與變限積分有關(guān)的問題
3.8.1 討論變限積分函數(shù)的性態(tài)
3.8.2 求變限積分的導(dǎo)數(shù)
3.8.3 求含變限積分的極限
3.8.4 求解含有變限積分等式的有關(guān)問題
3.9 反常積分
3.9.1 判別反常積分的斂散性
3.9.2 計(jì)算反常積分
3.10 定積分的應(yīng)用
3.10.1 已知曲線,求其所圍平面圖形的面積
3.10.2 求旋轉(zhuǎn)體體積
3.10.3 求旋轉(zhuǎn)體的側(cè)面積(表面積)
3.10.4 求平面曲線的弧長
3.10.5 求解平面圖形面積、旋轉(zhuǎn)體體積與極值、最值相結(jié)合的問題
3.10.6 求函數(shù)在區(qū)間上的平均值
3.10.7 定積分在物理學(xué)中的簡單應(yīng)用
習(xí)題3
第4章 向量代數(shù)與空間解析幾何
4.1 利用向量的定義和性質(zhì)求解有關(guān)問題
4.2 計(jì)算向量的數(shù)量積、向量積與混合積
4.3 求平面方程
4.4 求直線方程
4.5 求點(diǎn)到直線或到平面的距離
4.6 討論直線、平面之間的位置關(guān)系
4.7 建立曲面方程
習(xí)題4
第5章 多元函數(shù)微分學(xué)及其應(yīng)用
5.1 二元函數(shù)的幾個(gè)概念及其相互關(guān)系
5.1.1 二元函數(shù)的極限、連續(xù)、可偏導(dǎo)及可微的相互關(guān)系
5.1.2 求解x(或y)的一元函數(shù)f(x,y0)(或f(x0,y))的有關(guān)問題
5.2 計(jì)算多元函數(shù)的偏導(dǎo)數(shù)和全微分
5.2.1 利用隱函數(shù)存在定理確定隱函數(shù)
5.2.2 計(jì)算多元顯函數(shù)的偏導(dǎo)數(shù)
5.2.3 計(jì)算抽象復(fù)合函數(shù)的偏導(dǎo)數(shù)
5.2.4 求隱函數(shù)的偏導(dǎo)數(shù)
5.2.5 簡化計(jì)算偏導(dǎo)數(shù)的若干方法
5.2.6 多元函數(shù)的全微分
5.3 求二元函數(shù)的極值和最值
5.3.1 求解無條件極值問題
5.3.2 求解條件極值問題
5.3.3 求函數(shù)z=f(x,y)在有界閉區(qū)域上的最值
5.4 二元函數(shù)微分學(xué)在幾何上的應(yīng)用
5.5 求函數(shù)的方向?qū)?shù)和梯度
習(xí)題5
第6章 重積分
6.1 交換二重積分的積分次序或轉(zhuǎn)換其坐標(biāo)系
6.1.1 交換二(累)次積分的積分次序
6.1.2 轉(zhuǎn)換坐標(biāo)系
6.2 計(jì)算二重積分
6.2.1 計(jì)算累次(二次)積分■dx或■dy
6.2.2 利用積分區(qū)域的對(duì)稱性簡化二重積分的計(jì)算
6.2.3 求需分塊計(jì)算的二重積分
6.2.4 比較二重積分值的大小
6.3 三重積分的計(jì)算方法
習(xí)題6
第7章 曲線積分和曲面積分
7.1 計(jì)算第一類曲線積分
7.2 計(jì)算第二類平面曲線積分
7.3 求解曲線積分與路徑無關(guān)的有關(guān)問題
7.4 第一類曲面積分的算法
7.5 第二類曲面積分的算法
7.6 利用積分曲面的對(duì)稱性計(jì)算第二類曲面積分
7.7 曲線積分、曲面積分的應(yīng)用
7.8 計(jì)算向量場(chǎng)的散度與旋度
習(xí)題7
第8章 無窮級(jí)數(shù)
8.1 常數(shù)項(xiàng)級(jí)數(shù)斂散性的判別
8.1.1 利用常數(shù)項(xiàng)級(jí)數(shù)斂散性定義及其性質(zhì)判別其斂散性
8.1.2 判別正項(xiàng)級(jí)數(shù)的斂散性
8.1.3 判別交錯(cuò)級(jí)數(shù)的斂散性
8.1.4 判別任意項(xiàng)級(jí)數(shù)的斂散性
8.2 冪級(jí)數(shù)
8.2.1 求冪級(jí)數(shù)的收斂半徑、收斂區(qū)間及收斂域
8.2.2 已知一冪級(jí)數(shù)的收斂半徑(收斂域),求與此冪級(jí)數(shù)有關(guān)的另一冪級(jí)數(shù)的收斂半徑(收斂域)
8.2.3 已知兩冪級(jí)數(shù)的收斂半徑,求其和級(jí)數(shù)的收斂半徑
8.2.4 利用阿貝爾定理確定冪級(jí)數(shù)的斂散性
8.2.5 冪級(jí)數(shù)和函數(shù)的求法
8.2.6 求函數(shù)的冪級(jí)數(shù)展開式
8.3 傅里葉級(jí)數(shù)
8.3.1 求傅里葉級(jí)數(shù)在某一點(diǎn)處的收斂和
8.3.2 求傅里葉級(jí)數(shù)的系數(shù)
習(xí)題8
第9章 常微分方程
9.1 求解一階線性微分方程
9.1.1 求解可分離變量方程
9.1.2 求解齊次微分方程
9.1.3 求解一階線性微分方程
9.1.4 求解可化為上述基本類型的一階線性微分方程
9.2 求解可降階的高階微分方程
9.2.1 求解形如y(n)=f(x)的高階微分方程
9.2.2 求解形如y″=f(z,y′)的微分方程
9.2.3 求解形如y″=f(y,y′)的微分方程
9.3 求解二階微分方程
9.3.1 利用二階線性微分方程解的性質(zhì)和結(jié)構(gòu)求解有關(guān)問題
9.3.2 求解高階常系數(shù)齊次線性方程
9.3.3 確定高階常系數(shù)非齊次線性方程的特解形式
9.3.4 求解二階常系數(shù)非齊次線性微分方程
9.3.5 已知常系數(shù)線性微分方程的解,反求該微分方程
9.4 歐拉方程的解法
習(xí)題9
習(xí)題答案或提示

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號(hào) 鄂公網(wǎng)安備 42010302001612號(hào)