注冊 | 登錄讀書好,好讀書,讀好書!
讀書網(wǎng)-DuShu.com
當(dāng)前位置: 首頁出版圖書教育/教材/教輔考試研究生入學(xué)考試考研數(shù)學(xué)客觀題簡化求解技巧分類歸納(概率論與數(shù)理統(tǒng)計(jì) 一)

考研數(shù)學(xué)客觀題簡化求解技巧分類歸納(概率論與數(shù)理統(tǒng)計(jì) 一)

考研數(shù)學(xué)客觀題簡化求解技巧分類歸納(概率論與數(shù)理統(tǒng)計(jì) 一)

定 價(jià):¥22.80

作 者: 毛綱源 編著
出版社: 華中科技大學(xué)出版社
叢編項(xiàng):
標(biāo) 簽: 概率論與數(shù)理統(tǒng)計(jì)

ISBN: 9787560961361 出版時間: 2010-06-01 包裝: 平裝
開本: 16開 頁數(shù): 164 字?jǐn)?shù):  

內(nèi)容簡介

  《考研數(shù)學(xué)(1)客觀題簡化求解技巧分類歸納(概率論與數(shù)理統(tǒng)計(jì))》以歷年考研數(shù)學(xué)真題中的客觀題(選擇題和填空題)為例,歸納、總結(jié)這類題型的簡化求解方法與技巧。這些方法與技巧不僅有助于快速、準(zhǔn)確地求解客觀題,而且對證明題和計(jì)算題的求解也能發(fā)揮重要的作用。讀者閱讀《考研數(shù)學(xué)(1)客觀題簡化求解技巧分類歸納(概率論與數(shù)理統(tǒng)計(jì))》,必定會提高復(fù)習(xí)效率和應(yīng)試能力。

作者簡介

  毛綱源教授,畢業(yè)于武漢大學(xué),留校任教,后調(diào)入武漢理工大學(xué)擔(dān)任數(shù)學(xué)物理系系主任,在高校從事數(shù)學(xué)教學(xué)與科研工作40余年,發(fā)表多篇考研數(shù)學(xué)論文,主講微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)課程。理論功底深厚,教學(xué)經(jīng)驗(yàn)豐富,思維獨(dú)特。現(xiàn)受聘于北京師范大學(xué)珠海分校教授,擔(dān)任數(shù)學(xué)的雙語教學(xué)工作。曾多次受邀在山東、廣東、湖北等地主講考研數(shù)學(xué),并得到學(xué)員的廣泛認(rèn)可和一致好評:“知識淵博,講解深入淺出,易于接受”?!敖忸}方法靈活,技巧獨(dú)特,輔導(dǎo)針對性極強(qiáng)”,“對考研數(shù)學(xué)的出題形式、考試重難點(diǎn)了如指掌,上他的輔導(dǎo)班受益匪淺”……同樣,毛老師的輔導(dǎo)書也受到讀者的歡迎與好評,有興趣的讀者可以上網(wǎng)查詢有關(guān)對他編寫的圖書的評價(jià)。

圖書目錄

第1章 隨機(jī)事件和概率
 1.1 隨機(jī)事件及其運(yùn)算
  1.1.1 用事件運(yùn)算表示有關(guān)事件
  1.1.2 事件之間的運(yùn)算
 1.2 計(jì)算事件的概率
  1.2.1 使用概率的加法公式、減法公式計(jì)算事件概率
  1.2.2 利用乘法公式和條件概率公式計(jì)算概率
  1.2.3 使用全集分解計(jì)算積事件或差事件的概率
 1.3 計(jì)算古典概率與幾何概率
  1.3.1 計(jì)算古典概率
  1.3.2 計(jì)算幾何概率
 1.4 使用全概率公式和貝葉斯公式計(jì)算事件的概率
 1.5 討論事件的獨(dú)立性
 1.6 計(jì)算伯努利概型中事件的概率
  1.6.1 已知試驗(yàn)次數(shù),求其成功次數(shù)的概率
  1.6.2 求在n次試驗(yàn)中取得k(1≤是≤n)次成功的概率
 習(xí)題1
第2章 隨機(jī)變量及其分布
 2.1 隨機(jī)變量的概率分布及其分布函數(shù)
  2.1.1 求離散型隨機(jī)變量的分布律及其分布函數(shù)
  2.1.2 求連續(xù)型隨機(jī)變量的分布函數(shù)
  2.1.3 判別F(z)是否是隨機(jī)變量的分布函數(shù)
  2.1.4 討論分布函數(shù)的性質(zhì)
 2.2 利用概率分布的性質(zhì)求其待定常數(shù)
 2.3 利用常見分布求相關(guān)事件的概率
  2.3.1 求離散型隨機(jī)變量取值的概率 
  2.3.2 求連續(xù)型隨機(jī)變量落在區(qū)間內(nèi)的概率
  2.3.3 已知隨機(jī)變量取值的概率,反求概率分布中的待定常數(shù)或隨機(jī)變量取值范圍
 2.4 求隨機(jī)變量函數(shù)的分布
 習(xí)題2
第3章 多維隨機(jī)變量及其分布
 3.1 求二維離散型隨機(jī)變量的聯(lián)合分布、邊緣分布、條件分布
  3.1.1 求二維離散型隨機(jī)變量(X,y)的聯(lián)合分布
  3.1.2 已知(x,y)的聯(lián)合概率分布pu求其邊緣分布
  3.1.3 求離散型隨機(jī)變量的條件分布 
 3.2 求二維連續(xù)型隨機(jī)變量的分布
  3.2.1 求二維連續(xù)型隨機(jī)變量的聯(lián)合分布
  3.2.2 由聯(lián)合分布確定邊緣分布
  3.2.3 由聯(lián)合分布確定條件分布
  3.2.4 已知X,y的分布,求max{X,y)或(和)min{X,y)的分布
 3.3 求兩個隨機(jī)變量函數(shù)的分布
  3.3.1 求兩離散型隨機(jī)變量和差的分布
  3.3.2 已知(X,y)的概率密度廠(z,y),求Z=g(X,y)的概率密度
  3.3.3 已知隨機(jī)變量的分布,求多維隨機(jī)變量最大值與最小值的分布
 3.4 求解與二維均勻分布和二維正態(tài)分布有關(guān)的問題
  3.4.1 求解二維均勻分布的有關(guān)問題
  3.4.2 利用二維正態(tài)分布求兩正態(tài)隨機(jī)變量線性函數(shù)的分布
 3.5 計(jì)算二維隨機(jī)變量取值的概率
  3.5.1 計(jì)算二維離散性隨機(jī)變量取值的概率
  3.5.2 求二維連續(xù)型隨機(jī)變量(X,y)落入?yún)^(qū)域內(nèi)的概率
  3.5.3 計(jì)算與離散型隨機(jī)變量有關(guān)的連續(xù)型隨機(jī)變量取值的概率
  3.5.4 求最值函數(shù)max{X,y)或min{X,y)滿足一定條件的概率
 3.6 討論隨機(jī)變量的獨(dú)立性
 3.7 確定二維隨機(jī)變量分布中的待定常數(shù)
 習(xí)題3
第4章 隨機(jī)變量的數(shù)字特征
 4.1 求隨機(jī)變量的數(shù)學(xué)期望和方差
  4.1.1 求一維離散型隨機(jī)變量的數(shù)學(xué)期望和方差
  4.1.2 求一維連續(xù)型隨機(jī)變量的數(shù)學(xué)期望和方差
 4.2 求一維隨機(jī)變量函數(shù)的數(shù)學(xué)期望和方差
  4.2.1 求一維離散型隨機(jī)變量函數(shù)的數(shù)學(xué)期望與方差
  4.2.2 求一維連續(xù)型隨機(jī)變量函數(shù)的數(shù)學(xué)期望與方差
 4.3 求二維隨機(jī)變量函數(shù)的數(shù)學(xué)期望和方差
 4.4 求協(xié)方差和相關(guān)系數(shù)
  4.4.1 協(xié)方差的求法
  4.4.2 相關(guān)系數(shù)的求法
 4.5 討論不相關(guān)性與獨(dú)立性
  4.5.1 討論隨機(jī)變量的不相關(guān)性
  4.5.2 討論隨機(jī)變量的獨(dú)立性  
 4.6 已知數(shù)字特征,求隨機(jī)變量的分布或其分布中的待定常數(shù)
 習(xí)題4
第5章 大數(shù)定律和中心極限定理
 5.1 用切比雪夫不等式估計(jì)隨機(jī)變量取值的概率
 5.2 大數(shù)定律
 5.3 中心極限定理
 習(xí)題5
第6章 樣本及抽樣分布
 6.1 求解與樣本均值、樣本方差有關(guān)的問題
  6.1.1 求與樣本均值、樣本方差有關(guān)的統(tǒng)計(jì)量的分布
  6.1.2 求與樣本均值、樣本方差有關(guān)的統(tǒng)計(jì)量的數(shù)字特征
  6.1.3 求與樣本均值、樣本方差有關(guān)的統(tǒng)計(jì)量取值的概率
 6.2 抽樣分布
  6.2.1 確定y2分布及其自由度
  6.2.2 確定t分布及其自由度
  6.2.3 確定F分布及其自由度
 6.3 已知隨機(jī)變量服從某抽樣分布,求其待定常數(shù)
 習(xí)題6
第7章 參數(shù)估計(jì)
 7.1 總體參數(shù)的點(diǎn)估計(jì)
  7.1.1 求總體未知參數(shù)的矩估計(jì)
  7.1.2 最(極)大似然估計(jì)量的求法
  7.1.3 估計(jì)量的評價(jià)標(biāo)準(zhǔn)
 7.2 求單個正態(tài)總體均值和方差的置信區(qū)間
  7.2.1 求單個正態(tài)總體均值的置信區(qū)間
  7.2.2 求單個正態(tài)總體方差的置信區(qū)間
 7.3 求兩個正態(tài)總體均值差和方差比的置信區(qū)間
  7.3.1 求兩個正態(tài)總體均值差的置信區(qū)間
  7.3.2 求兩個正態(tài)總體方差比的置信區(qū)間
 習(xí)題7
第8章 假設(shè)檢驗(yàn)
 8.1 假設(shè)檢驗(yàn)可能產(chǎn)生的兩類錯誤
  8.1.1 構(gòu)造簡單假設(shè)的顯著性檢驗(yàn)
  8.1.2 計(jì)算假設(shè)檢驗(yàn)中的兩類錯誤
 8.2 正態(tài)總體均值和方差的假設(shè)檢驗(yàn)
  8.2.1 單個正態(tài)總體的均值與方差的假設(shè)檢驗(yàn)
  8.2.2 兩個正態(tài)總體均值與方差的假設(shè)檢驗(yàn)
 習(xí)題8
習(xí)題答案或提示

本目錄推薦

掃描二維碼
Copyright ? 讀書網(wǎng) m.ranfinancial.com 2005-2020, All Rights Reserved.
鄂ICP備15019699號 鄂公網(wǎng)安備 42010302001612號